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Abstract. We discuss birational properties of Mukai varieties, i.e., of higher-
dimensional analogues of prime Fano threefolds of genus g ∈ {7, 8, 9, 10} over
an arbitrary field k of zero characteristic. In the case of dimension n ≥ 4 we
prove that these varieties are k-rational if and only if they have a k-point
except for the case of genus 9, where the same holds for n ≥ 5. Furthermore,
we prove that Mukai varieties of genus g ∈ {7, 8, 9, 10} and dimension n ≥ 5
contain cylinders if they have a k-point. Finally, we prove that the embedding
X ↪→ Gr(3, 7) for prime Fano threefolds of genus 12 is defined canonically
over any field of zero characteristic and use this to give a new proof of the
criterion of k-rationality for these threefolds.
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1. Introduction

A Mukai variety is a (smooth) Fano variety of geometric Picard number 1 and
coindex 3 which is not a form of a complete intersection in a weighted projective
space. Over an algebraically closed field of characteristic zero such varieties have
been classified by Mukai in [Muk92].

The main invariant of a Mukai variety X is the genus g(X) defined by the
formula

2g(X)− 2 = Hn,

where H is the ample generator of Pic(Xk̄) and n = dim(X). Clearly, a smooth
hyperplane section of a Mukai variety of dimension at least 4 is again a Mukai
variety of the same genus.

The following table lists maximal Mukai varieties X2g−2 over k̄, their genera
and dimensions:
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g X2g−2 dim(X2g−2)

6 CGr(2, 5) ∩Q ⊂ P10 6

7 OGr+(5, 10) ⊂ P15 10

8 Gr(2, 6) ⊂ P14 8

9 LGr(3, 6) ⊂ P13 6

10 G2Gr(2, 7) ⊂ P13 5

12 I3Gr(3, 7) ⊂ P13 3

Table 1. Maximal Mukai varieties

Here

• CGr(2, 5) ∩ Q is a transverse intersection of the cone over Gr(2, 5) with a
quadric,

• OGr+(5, 10) is a connected component of the Grassmannian of isotropic five-
dimensional subspaces in a ten-dimensional vector space endowed with a
non-degenerate quadratic form,

• Gr(2, 6) is the Grassmannian of two-dimensional subspaces in a six-dimen-
sional vector space,

• LGr(3, 6) is the Grassmannian of Lagrangian (three-dimensional) subspaces
in a six-dimensional symplectic vector space,

• G2Gr(2, 7) is the adjoint Grassmannian of the simple algebraic group G2,
and

• I3Gr(3, 7) is the Grassmannian of three-dimensional subspaces in a seven-
dimensional vector space isotropic for a (sufficiently general) triple of skew-
symmetric forms.

Note that for g ∈ {7, 8, 9, 10} the maximal varieties are homogeneous (and in
particular rigid), while for g ∈ {6, 12} they vary in non-trivial moduli spaces (of
dimensions 25 and 6, respectively).

Theorem 1.1 ([Muk92]). If X is a Mukai variety of genus g over an algebraically
closed field of characteristic zero then g ∈ {6, 7, 8, 9, 10, 12} and there is an embed-
ding X ↪→ X2g−2 into one of the maximal varieties listed in Table 1 such that X
is a transverse linear section of X2g−2.

An easy consequence of the Mukai’s theorem is that over an arbitrary field k
of characteristic zero any Mukai variety is a k-form of a linear section of one of the
maximal varieties.

The goal of this paper is to investigate birational properties of Mukai varieties
over arbitrary fields of zero characteristic. The case of Mukai threefolds has been
studied in [KP19], where in the case g ∈ {7, 9, 10, 12} we established for them
criteria of unirationality and rationality over an arbitrary field k of characteristic



Rationality of Mukai Varieties over Non-closed Fields 251

zero. Note that for g ∈ {6, 8} Mukai threefolds are known to be irrational even
over an algebraically closed field.

In this paper we consider Mukai varieties of dimension n ≥ 4. We denote
by X(k) the set of k-points of X . The main result of the paper is the following

Theorem 1.2. Let k be an arbitrary field of characteristic zero. Let X be a Mukai
variety of genus g = g(X) and dimension n = dim(X) such that

• either g ∈ {7, 8, 10} and n ≥ 4,
• or g = 9 and n ≥ 5.

Then the following conditions are equivalent:

(i) X is k-rational;
(ii) X is k-unirational;
(iii) X(k) �= ∅.

In the case (g, n) = (9, 4) we have the equivalence (ii) ⇐⇒ (iii).

Implications (i) =⇒ (ii) =⇒ (iii) of the theorem are evident, so the content
of the paper is in the implication (iii) =⇒ (i) (or (iii) =⇒ (ii) for (g, n) = (9, 4)).
This implication is proved in Theorem 3.3 for g ∈ {7, 8, 10}, and Corollary 4.10
for g = 9.

To prove the implication we use the Sarkisov link starting with the blowup
of a point for each of the maximal Mukai varieties X2g−2 of genus g ∈ {7, 8, 9, 10}
over k̄. These links are constructed in a uniform way for g ∈ {7, 8, 10} in Theo-
rem 2.2 (see also Propositions 2.10, 2.12, and 2.15), and separately for g = 9 in
Theorem 4.4.

For g ∈ {7, 8, 10} the links end with projective bundles over smooth four-
dimensional Fano varieties X+ (P4, a quadric, and a quintic del Pezzo fourfold,
respectively). We check in Theorem 3.1 that after passing to a smooth linear
section X ⊂ X2g−2 of dimension n we obtain a birational transformation (in

general this is an example of a so-called “bad link”) between X and a variety X̃+

with a morphism to X+ and general fiber Pn−4
k̄

. We prove in Theorem 3.3 that if
we start with a Mukai varietyX defined over k and a k-point, this transformation is
also defined over k and the general fiber of the morphism X̃+ → X+ is isomorphic
to Pn−4

k ; this implies k-rationality of X .

For g = 9 we use the link constructed in Theorem 4.4 in a similar way to show
that any Mukai variety X of genus 9 and dimension n with X(k) �= ∅ is birational
to a complete intersection X+ ⊂ P6 of 6− n quadrics containing a distinguished
Veronese surface S ⊂ X+ such that the divisorX+∩〈S〉 = X+∩P5 is k-rational, see
Theorem 4.9. For n ≥ 5 this implies k-rationality ofX and for n = 4 this implies its
k-unirationality, see Corollary 4.10. We expect that k-unirational Mukai fourfolds
of genus 9 are not k-rational in general, however we establish for them a sufficient
condition of k-rationality, Corollary 4.11.

In the Appendix we use the above results to prove that Mukai varieties of
genus g ∈ {7, 8, 9, 10} and dimension n ≥ 5 have cylinders, see Proposition A.1.
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The constructed birational transformations can be also applied to Mukai
threefolds.

In the case (g, n) = (7, 3) we obtain a birational transformation from X to a
Springer-type resolution of a special singular quartic threefold in P4; considering
another Springer resolution we extend this to a birational map between X and
a (possibly singular) quintic del Pezzo threefold. The latter is k-rational as soon
as it has a k-point. This construction gives a more direct than in [KP19] proof of
k-rationality of X , see Remark 3.4 for details.

Analogously, in the case (g, n) = (8, 3) we obtain a birational transformation
between X and a cubic threefold (Remark 3.5) and in the case (g, n) = (10, 3)
a birational transformation between X and a sextic del Pezzo fibration over P1

(Remark 3.6).

The last section of the paper is concerned with the case (g, n) = (12, 3). In
this case we prove that the embedding X ↪→ Gr(3, 7) constructed by Mukai over k̄
is defined over any field of characteristic zero and is canonical (Corollary 5.6).
Using this we construct in Theorem 5.1 a birational map between X and P3 which
looks very similar to the general construction of Theorem 2.2. Similarly to the
case (g, n) = (7, 3) this gives an alternative and more direct than in [KP19] proof
of k-rationality of prime Fano threefolds of genus 12 with k-points. We also apply
these results to the derived category of coherent sheaves on X , see Corollary 5.7.

To finish the introduction we remind what is known about the case of Mukai
varieties of genus 6 (so-called Gushel–Mukai varieties) and dimension n ≥ 4 which
are not covered by Theorem 1.2.

The case of Gushel–Mukai fourfolds is very hard and interesting already
over k̄; it is expected that a very general Gushel–Mukai fourfold is not k̄-rational
and there is a countable union of divisorial families (in the moduli space) of
Gushel–Mukai fourfolds which are k̄-rational, see [Pro93, DIM15, KP18, Deb20],
analogously to the case of cubic fourfolds.

In the remaining cases with g = 6 and n ∈ {5, 6}, it is known that each
Gushel–Mukai variety of dimension n ∈ {5, 6} is k̄-rational (see [DK18, Proposi-
tion 4.2]), but the question of its k-rationality is completely unclear.

We would like to thank the organizers of the conference “Rationality of Alge-
braic Varieties” on the Schiermonnikoog Island, where the idea of this paper was
born. We are grateful to the referee for valuable comments.

2. A birational transformation given by a family of quadrics

Assuming thatX is a smooth projective variety “birationally covered” (in the sense
described below) by a family of quadrics passing through a fixed point x0 ∈ X, we
construct in §§2.1–2.2 a birational transformation of X into a projective bundle.
This transformation is, essentially, a relative version of the birational isomorphism
between a quadric and a projective space

Qm ������� Pm
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induced by the linear projection from a point x0 ∈ Qm; it blows up the point x0

and then contracts all lines on Qm passing through x0.
In §§2.3–2.5 we show that this construction applies to the Mukai varieties

X12 = OGr+(5, 10), X14 = Gr(2, 6), and X18 = G2Gr(2, 7) of genus g = 7, 8,
and 10, respectively.

2.1. The statement

Let X ⊂ P(W ) be a smooth projective variety and let x0 ∈ X be a point. We
denote by H the restriction to X of the hyperplane class of P(W ) and consider it
as a polarization. Assume a projective scheme X+ and a subscheme

Q ⊂ X×X+

are given such that Q is a flat over X+ family of quadrics in X containing x0,
i.e., for each point x+ ∈ X+ the fiber Qx+ ⊂ X ⊂ P(W ) of Q is a quadric in X
containing the point x0. We denote by

pQ : Q −−−−→ X and qQ : Q −−−−→ X+

the natural projections and by

sx0 : X
+ −−−−→ Q (2.1.1)

the section of qQ given by the point x0.
Let F1(X, x0) be the Hilbert scheme of lines in X (with respect to H) passing

through the point x0 and let F1(Q/X+, x0) be the relative Hilbert scheme of lines
in fibers of qQ : Q → X+ passing through the point x0. Let

L (X, x0) ⊂ F1(X, x0)×X and L (Q/X+, x0) ⊂ F1(Q/X+, x0)×X+ Q

be the corresponding universal families of lines and let

pL : L (X, x0) −−−−→ X and p̃L : L (Q/X+, x0) −−−−→ Q

be the natural projections.
To state the theorem we will need the following simple observation.

Lemma 2.1. The morphism pQ : Q → X induces a morphism

F1(Q/X+, x0) −−−−→ F1(X, x0) (2.1.2)

such that

L (Q/X+, x0) ∼= F1(Q/X+, x0)×F1(X,x0) L (X, x0) (2.1.3)

and if morphism (2.1.2) is surjective then pQ
(
p̃L (L (Q/X+,x0))

)
=pL

(
L (X,x0)

)
as subvarieties in X.

Proof. If L ⊂ Qx+ is a line through x0, then pQ(L) ⊂ X is a line through x0; this
defines the morphism (2.1.2). Moreover, pQ : L → pQ(L) is an isomorphism; this
proves (2.1.3). The last statement of the lemma is obvious. �

We denote by ρ(Y ) the Picard number of a variety Y .
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Theorem 2.2. Let X ⊂ P(W ) be a smooth projective variety, and let Q ⊂ X×X+

be an X+-flat family of quadrics in X passing through a point x0 ∈ X. Set

n = dim(X), m = dim(Q/X+).

Assume the following conditions hold:

(i) The scheme X+ is smooth, projective, connected, and ρ(X+) = ρ(X).
(ii) The map pQ : Q → X is birational.
(iii) The scheme F1(X, x0) is smooth, the scheme F1(Q/X+, x0) is smooth over

F1(X, x0) and connected, and

dim(F1(X, x0)) < dim(F1(Q/X+, x0)) = dim(X)− 2.

Then there is a commutative diagram

D̂� �

�������
���

���
���

����
���

���
���

���

L (X, x0)� �

��

X̂

π
�����

���
���

���

π+
����

���
���

���
���

F1(Q/X+, x0)� �

��
Blx0(X)

σ

��

ψ ��������������

φ

����
���

���
���

�
PX+(E )

σ+

��

φ+

�����
���

���
���

��

X X X+,

(2.1.4)

where

• σ is the blowup of x0 with the exceptional divisor E ⊂ Blx0(X),
• E is a subbundle of rank m+ 1 in W ⊗ OX+ , where W = W/〈x0〉,
• σ+ is the projective bundle morphism,
• φ is the morphism induced by the linear projection P(W ) ��� P(W ) from x0,
• φ+ is the morphism induced by the embedding E ↪→ W ⊗ OX+ ,
• X = φ(Blx0(X)) = φ+(PX+(E )) ⊂ P(W ),
• π is the blowup of L (X, x0),
• π+ is the blowup of F1(Q/X+, x0),

• D̂ is the common exceptional divisor of π and π+,

D̂ ∼= L (X, x0)×F1(X,x0) F1(Q/X+, x0),

• ψ = π+ ◦ π−1 = φ−1
+ ◦ φ is a small birational map (flop or antiflip).

If Ê ⊂ X̂ is the strict transform of E ⊂ Blx0(X), the morphisms π and π+ induce
isomorphisms

Ê ∼= BlF1(X,x0)(E) and Ê ∼= PX+(E0), (2.1.5)

where E0 ⊂ E is a rank-m subsheaf.
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Furthermore, the maps π, φ, φ+, and π+ induce isomorphisms

X̂ \ D̂
π∼= Blx0(X) \L (X, x0)

φ∼= X \ F1(X, x0)

φ+∼= PX+(E ) \ F1(Q/X+, x0)
π+∼= X̂ \ D̂. (2.1.6)

On the other hand, the restrictions of the maps π and π+ to D̂ are the projec-
tions to the factors L (X, x0) and F1(Q/X+, x0), respectively, the restriction of φ
to L (X, x0) is the natural P1-fibration L (X, x0) −−→ F1(X, x0), and the restric-
tion of φ+ to F1(Q/X+, x0) is the morphism (2.1.2), which is also a projective
bundle.

Finally, the birational transformation ψ induces an isomorphism

E \ F1(X, x0) ∼= PX+(E0) \ F1(Q/X+, x0). (2.1.7)

Remark 2.3. If every quadric Qx+ is smooth at x0 then E0 ⊂ E is a vector sub-

bundle and the morphism PX+(E0) → X+ is a Pm−1-fibration; otherwise, it has
general fiber Pm−1, cf. Remark 2.16.

In the course of proof we will explain the construction of the vector bundle E ,
its subsheaf E0, the embeddings

L (X, x0) ↪−−−−−→ Blx0(X), F1(Q/X+, x0) ↪−−−−−→ PX+(E ),

and

F1(X, x0) ↪−−−−−→ E

and other details. Before that we deduce from the theorem the following useful
lemma.

Lemma 2.4. In the setting of Theorem 2.2, assume KX = −rH for some r ∈ Z.
If the divisor class −KX+ + c1(E ) is very ample on X+ then the map

σ+ ◦ ψ : Blx0(X) ������� X+

is given by the linear system |(r−m− 1)H− (n−m− 2)E|.

Proof. Since ψ is a small birational map, it identifies

Pic(Blx0(X)) and Pic(PX+(E )).

The canonical class of Blx0(X) is equal to −rH+ (n − 1)E. On the other hand,
the canonical class of PX+(E ) is equal to KX+ − c1(E ) − (m + 1)H, where H is
the relative hyperplane class of PX+(E ). Finally, we have H = H − E since φ is
induced by the linear projection from x0 and φ+ is induced by the embedding
E ↪→ W ⊗ OX+ . Combining all this, we obtain the equality

−KX+ +c1(E ) = rH− (n−1)E− (m+1)(H−E) = (r−m−1)H− (n−m−2)E.

If the left side of the equality is very ample, the result follows. �
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2.2. The proof

Let

Ẽ := qQ∗(p∗QOX(H))∨.

Since Q ⊂ P(W )×X+ → X+ is a flat family of m-dimensional quadrics contained
in P(W ), this is a vector subbundle in W ⊗ OX+ of rank m + 2 and there is an
embedding

ι : Q ↪−−−→ PX+(Ẽ ) ⊂ P(W )×X+

as a divisor of relative degree 2. Note that the pullback to PX+(Ẽ ) of the hyperplane
class H of P(W ) is a relative hyperplane class. Therefore, there is a divisor class D
on X+ such that

ι(Q) ∼ 2H+D (2.2.1)

in Pic(PX+(Ẽ )).

The section (2.1.1) of Q → X can be also thought of as a section of PX+(Ẽ );

it corresponds to an embedding OX+ ↪→ Ẽ of vector bundles. We denote by

E = Ẽ /OX+

the quotient bundle. The embedding Ẽ ↪→ W ⊗ OX+ induces an embedding of
vector bundles

E ↪−−−→ W ⊗ OX+ ,

where W = W/〈x0〉, and a morphism

φ+ : PX+(E ) −−−−→ P(W ). (2.2.2)

We denote by H the hyperplane class of P(W ); its pullback to PX+(E ) (which we
also abusively denote by H) is then a relative hyperplane class. We consider the

blowup of PX+(Ẽ ) along the section sx0(X
+) and denote by EP its exceptional

divisor.

Lemma 2.5. There is an isomorphism of X+-schemes

Blsx0 (X
+)(PX+(Ẽ )) ∼= PPX+(E )(O ⊕ O(−H)).

Moreover, H is a relative hyperplane class for PPX+ (E )(O ⊕ O(−H)) and there is
a linear equivalence

EP ∼ H−H.

Finally, EP is equal to the section of the projection

πE : PPX+ (E )(O ⊕ O(−H)) −−−−→ PX+(E )

that corresponds to the embedding O ↪→ O ⊕ O(−H).

Proof. This is just a relative version of the isomorphism of the blowup of a pro-
jective space at a point and the P1-bundle over the projective space of dimension
by one less. �
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We define

X̂ := Blsx0 (X
+)(Q)

to be the blowup of Q along the image of the section (2.1.1).

Lemma 2.6. There exist morphisms π, ι̂, and π+ that make the following diagram
commutative

X̂

σ̂

��

π

��

ι̂ ��

π+

��

Blsx0 (X
+)(PX+(Ẽ ))

��

πE

����
���

���
���

���

Blx0(X)

σ

��

Q

qQ

�������
������

������
������

������
������

��

pQ

�����
���

���
���

�
� � ι �� PX+(Ẽ )

�����
���

���
���

���
�

PX+(E )

σ+

��
X X+,

(2.2.3)

where σ and σ̂ are the blowup maps and σ+ is the projective bundle morphism.
Moreover, the morphism π is birational.

Proof. Since the scheme-theoretic preimage of the point x0 via the map pQ coin-

cides with sx0(X
+), its scheme-theoretic preimage in X̂ is a Cartier divisor, hence

there is a map π : X̂ → Blx0(X) making the left square commutative. It is bira-
tional, because so are the morphisms σ, σ̂, and pQ (for pQ this is assumption (ii)).

Similarly, there exists a morphism ι̂ : X̂ −−→ Blsx0 (X
+)(PX+(Ẽ )) in the di-

agram such that the central square commutes. The right square has been con-
structed in Lemma 2.5. Finally, π+ can be defined as the composition πE ◦ ι̂. �

We need to identify the maps π and π+ as blowups. We start with π+.

Lemma 2.7. There is an embedding F1(Q/X+, x0) ↪→ PX+(E ) such that the mor-

phism π+ is the blowup of F1(Q/X+, x0), and the exceptional divisor D̂ of π+ is

isomorphic to L (Q/X+, x0) over Q. In particular, X̂ and D̂ are smooth.

Proof. There is a natural identification of the relative over X+ Hilbert scheme of

lines in PX+(Ẽ ) passing through x0 as

F1(PX+(Ẽ )/X+, x0) ∼= PX+(E ),

such that the universal line L (PX+(Ẽ )/X+, x0) is isomorphic to the projective
bundle PPX+ (E )(O ⊕ O(−H)) and the section of

L (PX+(Ẽ )/X+, x0) → F1(PX+(Ẽ )/X+, x0)

corresponding to x0 is equal to EP; this in particular defines a natural embed-
ding F1(Q/X+, x0) ↪→ PX+(E ).

Since ι(Q) is a divisor of type 2H+D (see (2.2.1)) it follows that F1(Q/X+, x0)
is the zero locus of a section of πE ∗O(2H+D−EP) on PPX+ (E )(O ⊕ O(−H)). On
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the other hand, X̂ is the strict transform of Q in Blsx0 (X
+)(PX+(Ẽ )), hence it is

the zero locus of the same section of O(2H+D −EP). By Lemma 2.5 we have

O(2H+D −EP) ∼= O(H+H+D),

so this is a relative hyperplane class for the P1-bundle PPX+(E )(O ⊕ O(−H)).

Applying [Kuz16, Lemma 2.1] we conclude that

X̂ ∼= BlF1(Q/X+,x0)(PX+(E ))

since codimPX+ (E )(F1(Q/X+, x0)) = dim(X) − dim(F1(Q/X+, x0)) = 2 by as-

sumption (iii).

This argument also proves that the exceptional divisor D̂ of the blowup

coincides with the universal line L (Q/X+, x0). The smoothness of the varieties X̂

and D̂ follows from the smoothness of X+ and F1(Q/X+, x0), assumptions (i)
and (iii). �

Now we can describe the morphism π.

Lemma 2.8. There is a natural embedding L (X, x0) ↪→ Blx0(X) such that the
morphism π is the blowup with center L (X, x0). Moreover,

E ∩L (X, x0) ∼= F1(X, x0), (2.2.4)

the intersection is transverse, and π−1(E) ∼= BlF1(X,x0)(E).

Proof. The scheme-theoretic preimage of the point x0 along the map

pL : L (X, x0) → X

is equal to the image of the section sx0 : F1(X, x0) → L (X, x0); in particular, it
is a Cartier divisor on L (X, x0). Therefore, the morphism pL lifts to a morphism

L (X, x0) −−→ Blx0(X),

which is clearly a closed embedding. Moreover, the scheme-theoretic preimage of E
under this embedding is equal to the image of the section sx0 , which proves (2.2.4).
Since the intersection is smooth (by assumption (iii)), it is transverse.

Consider the birational morphism π : X̂ → Blx0(X). Its source is smooth by
Lemma 2.7 and its target is smooth by the assumptions. Furthermore, from the
diagram (2.2.3) and Lemma 2.7 we deduce that

σ(π(D̂)) = pQ(σ̂(D̂)) = pQ(σ̂(L (Q/X+, x0)))

= pQ(p̃L (L (Q/X+, x0))) = pL (L (X, x0))

(the last equality uses Lemma 2.1). Since D̂ is irreducible, π(D̂) = L (X, x0)
follows. Note that codim(L (X, x0)) = dim(X) − dim(F1(X, x0)) − 1 > 1 (again
by assumption (iii)). Finally, we have

ρ(X̂) = ρ(X+) + 2 = ρ(X) + 2 = ρ(Blx0(X)) + 1,

hence by [Kuz18, Lemma 2.5] we conclude that π is the blowup with center
L (X, x0).
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Since the divisor E intersects the blowup center transversely along F1(X, x0),
its preimage is equal to its strict transform and isomorphic to the blowup with
center F1(X, x0). �

Finally, we can combine the above results and finish the proof of the theorem.

Proof of Theorem 2.2. The morphisms π and π+ are constructed in Lemma 2.6
and they are proved to be the blowups in Lemma 2.7 and 2.8, respectively. The

description of the divisor D̂ as the fiber product follows from a combination of
Lemma 2.7 with (2.1.3).

The morphism φ is induced by the linear projection from x0, and the mor-
phism φ+ is defined in (2.2.2). We have φ ◦ π = φ+ ◦ π+, because the two maps
can be rewritten as the compositions

X � �

�������
�����

��

X̂
σ̂ �� Q

pQ
�������������

��

ι �����
����

�� P(W ) ������� P(W ),

PX+(Ẽ )

������������ ������� PX+(E )

�����������

and the squares commute.
The equality φ ◦ π = φ+ ◦ π+ implies that φ(Blx0(X)) = φ+(PX+(E ))

and π+ ◦ π−1 = φ−1
+ ◦ φ, thus defining the subvariety X ⊂ P(W ) and the bira-

tional map ψ, respectively. Since the morphisms π and π+ are contractions with
the same exceptional divisor, ψ is small. Assumption (iii) implies that

codimBlx0 (X)(L (X, x0)) ≥ codimPX+ (E )(F1(Q/X+, x0)),

hence ψ is a flop or antiflip.
It remains to construct the subsheaf E0 ⊂ E , to prove (2.1.5), (2.1.6), and

(2.1.7), and to describe the restrictions of π, π+, φ, and φ+ to various strata.

Consider the diagram (2.2.3). By construction of π, the preimage of E in X̂

is the exceptional divisor of σ̂, which is also equal X̂ ∩ EP. The divisor EP by
Lemma 2.5 is equal to the section of the morphism πE corresponding to the em-
bedding O ↪→ O ⊕O(−H); in particular EP is isomorphic to PX+(E ) via πE , and
the restriction of the hyperplane class H to EP is trivial.

As it is explained in Lemma 2.7, X̂ is the divisor of type

H+H+D in PPX+(E )(O ⊕ O(−H)),

hence X̂ ∩EP is equal to the zero locus of a section of the line bundle O(H+D)
on EP = PX+(E ). This section corresponds to a morphism

E −−−−→ O(D)

on X+. If we define E0 as its kernel, then X̂∩EP = PX+(E0), and the morphism πE

embeds it naturally into PX+(E ). This proves (2.1.5).
The maps π and π+ in (2.1.6) are isomorphisms by Lemma 2.8 and 2.7,

respectively. Furthermore, the map φ is an isomorphism because it is induced by
the linear projection and the map φ+ is an isomorphism because φ+ = φ◦π ◦π−1

+ .
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The restriction of π+ to D̂ coincides with the projection to the second factor

by Lemma 2.7. Similarly, by Lemma 2.8 the restriction of π to D̂ coincides with the
map L (Q/X+, x0) → L (X, x0) induced by the morphism (2.1.2), hence it is the
projection to the first factor. On the other hand, since π is a smooth blowup, this
morphism is a projective bundle, hence so is the morphism (2.1.2). The restriction
of φ to L (X, x0) is the natural P1-bundle, because φ is induced by the linear
projection from x0, and the restriction of φ+ to F1(Q/X+, x0) is the map (2.1.2),

because it is the only map such that φ+ ◦ π+ = φ ◦ π on D̂.

Finally, the isomorphism (2.1.7) follows from (2.1.5) and (2.1.6). �

2.3. Grassmannians of lines

In this section we show that the assumptions of Theorem 2.2 are satisfied for Grass-
mannians X = Gr(2, V ). Note that when dim(V ) = 6 the Grassmannian Gr(2, V )
is the maximal Mukai variety X14 of genus g = 8. In this case we show that
diagram (2.1.4) exists with X+ = Gr(2, 4).

Assume dim(V ) ≥ 5. We consider the Plücker embedding

X := Gr(2, V ) ↪→ P(∧2V ),

so that H is the Plücker polarization. Let U0 ⊂ V be a two-dimensional subspace
and let x0 ∈ X be the corresponding point. We denote the quotient space by

V + := V/U0.

We further denote

X+ := Gr(2, V +), Q := Fl(2, 4;V )×Gr(4,V ) X
+,

where the embedding X+ ↪→ Gr(4, V ) takes a subspace U+ ⊂ V + to its preimage
under the projection V → V + along U0. Note that Q → X+ is a Gr(2, 4)-fibration,
so its fibers are smooth four-dimensional quadrics on X passing through x0.

Lemma 2.9. There is a commutative diagram

F1(Q/X+, x0)

��

P(U0)× Fl(1, 2;V +)

��
F1(X, x0) P(U0)× P(V +),

where the map on the left is the map (2.1.2) and the map on the right is induced
by the natural map Fl(1, 2;V +) → P(V +). In particular, F1(X, x0) is smooth,
F1(Q/X+, x0) is smooth over F1(X, x0), connected, and

dim(F1(Q/X+, x0)) = 2 dim(V )− 6 = dim(X)− 2.

Proof. Recall that any line on Gr(2, V ) has the form

�(V1, V3) = {[U ] | V1 ⊂ U ⊂ V3}, (2.3.1)
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where V1 ⊂ V3 ⊂ V is a flag with dim(Vi) = i. Clearly, [U0] ∈ �(V1, V3) means
V1 ⊂ U0 ⊂ V3; therefore such lines are determined by the points [V1] ∈ P(U0) and
[V3/U0] ∈ P(V/U0) = P(V +); this proves the bottom equality.

The line �(V1, V3) lies on the quadric Q[U+] if and only if V3/U0 ⊂ U+.

Therefore, the fiber of the map (2.1.2) over [�(V1, V3)] parameterizes all U+ ⊂ V +

such that V3/U0 ⊂ U+. This is the space P(V/V3), i.e., the fiber of the projection
Fl(1, 2;V +) → P(V +). This proves the remaining part of the lemma. �

Proposition 2.10. For X,X+, andQ defined above the assumptions of Theorem 2.2
are satisfied. Moreover, the bundles E and E0 constructed in Theorem 2.2 have the
form

E0
∼= U0 ⊗U +, E ∼= E0 ⊕ ∧2U +,

where U + is the tautological bundle on Gr(2, V +), and the map

σ+ ◦ ψ : Blx0(Gr(2, V )) ������ Gr(2, V +)

from (2.1.4) is given by the linear system |H− 2E|.

Proof. Assumption (i) of Theorem 2.2 is evident.

The fiber of the map pQ : Q → X over the point [U ] ∈ X = Gr(2, V ) cor-
responding to a subspace U ⊂ V parameterizes four-dimensional subspaces in V
that contain both U and U0. Generically, this is just one point [U0 + U ], so pQ is
birational, hence assumption (ii) is satisfied.

Assumption (iii) is proved in Lemma 2.9.

Furthermore, we have

Ẽ = ∧2(U0 ⊗ O ⊕U +) = (∧2U0 ⊗ O)⊕ (U0 ⊗U +)⊕ ∧2U +.

The section sx0 corresponds to the first summand and the subbundle E0 is the
second summand.

To show the last claim note that −KX+ + c1(E ) = (dim(V )− 5)H+ and by
Lemma 2.4 its pullback to Blx0(X) is equal to (dim(V ) − 5)(H − 2E), because
r = dim(V ), n = 2dim(V )− 4, and m = 4. Since the Picard group of Blx0(X) has
no torsion, it follows that if dim(V ) > 5 the pullback of the very ample class H+

is H− 2E, hence the map σ+ ◦ ψ is given by the linear system |H− 2E|.
Alternatively, if we choose a basis {vi} in V such that the first two vec-

tors generate U0 (hence all the other vectors project to a basis of V +), then the
map σ+ ◦ ψ is induced by the linear map ∧2V → ∧2V + that acts by

(vi ∧ vj)1≤i<j≤dim(V ) �→ (vi ∧ vj)3≤i<j≤dim(V ).

In other words, if {vi} is the dual basis of V ∨, the map is given by the Plücker
coordinates vij , where 3 ≤ i < j ≤ dim(V ). It remains to note that each of these vij

vanishes to order 2 at the point x0, hence belongs to the linear system |H−2E|. �
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2.4. Orthogonal Grassmannian

In this section we show that the assumptions of Theorem 2.2 are satisfied for the
orthogonal Grassmannian X = OGr+(5, 10), the maximal Mukai variety X12 of
genus 7. We refer to [Kuz18] for basic facts about its geometry. In this case we
show that diagram (2.1.4) exists with X+ = P4. We assume here that the base
field is algebraically closed.

We denote by V a ten-dimensional vector space endowed with a non-degen-
erate quadratic form, consider the half-spinor embedding

X = OGr+(5, V ) → P(W ) ∼= P15,

and denote by H the corresponding polarization. Let U0 ⊂ V be a five-dimensional
isotropic subspace and let x0 ∈ X be the corresponding point. We denote

X+ := P(U0), Q := OFl+(1, 5;V )×P(V ) X
+,

where we consider the natural embeddingX+ = P(U0) ↪→ P(V ). Note that the pro-
jection Q → X+ is a family of smooth six-dimensional quadrics on X, see [Kuz18,
§3.1], passing through x0.

Lemma 2.11. There is a commutative diagram

F1(Q/X+, x0)

��

Fl(1, 3;U0)

��
F1(X, x0) Gr(3, U0),

where the map on the left is the morphism (2.1.2) and the map on the right is the
natural projection. In particular, F1(X, x0) is smooth, F1(Q/X+, x0) is smooth
over F1(X, x0), connected, and

dim(F1(Q/X+, x0)) = 8 = dim(X) − 2.

Proof. By [Kuz18, Theorem 3.2] the Hilbert scheme of lines on OGr+(5, V ) is
OGr(3, V ), and the line �(V3) corresponding to an isotropic subspace V3 ⊂ V
contains the point [U0] if and only if V3 ⊂ U0; this proves the bottom equality.

The fiber of the map (2.1.2) over a point [�(V3)] parameterizes all V1 ⊂ V
such that V1 ⊂ V3; this proves the remaining part of the lemma. �

Proposition 2.12. For X,X+, andQ defined above the assumptions of Theorem 2.2
are satisfied. Moreover, the bundles E and E0 constructed in Theorem 2.2 have the
form

E0
∼= Ω2

P(U0)
(2), E ∼= E0 ⊕ OP(U0)(−1),

and the map σ+ ◦ ψ : Blx0(OGr+(5, V )) ��� P(U0) from (2.1.4) is given by the
linear system |H− 2E|.
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Proof. Assumption (i) of Theorem 2.2 is evident.
The fiber of the map pQ : Q → X over the point [U ] ∈ X = OGr+(5, V )

corresponding to an isotropic subspace U ⊂ V is equal to P(U0 ∩ U). Since [U ] is
contained in the same connected component of OGr(5, V ) as [U0], we have

dim(U ∩ U0) ≡ dim(U0) mod 2,

see [Kuz18, §2.1]. Thus, for [U ] general in OGr+(5, V ) we have dim(U ∩ U0) = 1,
hence the general fiber of pQ is a point, pQ is birational, hence assumption (ii) is
satisfied.

Assumption (iii) is proved in Lemma 2.11.

Furthermore, by [Kuz18, (3.3)] the bundle Ẽ is the restriction to P(U0) of the
spinor bundle on the quadric OGr(1, V ), hence by [Ott88, Theorem 2.6] we have

Ẽ ∼= OP(U0) ⊕ Ω2
P(U0)

(2)⊕ Ω4
P(U0)

(4).

The section sx0 corresponds to the first summand, and the subbundle E0 is the
second summand.

The fact that the map σ+ ◦ ψ is given by the linear system |H− 2E| follows
from Lemma 2.4. �

2.5. Grassmannian of the group G2

In this section we show that the assumptions of Theorem 2.2 are satisfied for the
adjoint G2-Grassmannian X = G2Gr(2, 7), the maximal Mukai variety X18 of
genus 10. We refer to [Muk88, KR13] for basic facts about its geometry. In this
case we show that diagram (2.1.4) exists with X+ a quintic del Pezzo fourfold. We
assume again that the base field is algebraically closed.

We denote by V a seven-dimensional vector space endowed with a general
3-form λ ∈ ∧3V ∨. Then

X = G2Gr(2, V ) ⊂ Gr(2, V )

is the locus of subspaces U ⊂ V annihilated by λ. Moreover, we have dim(X) = 5,
Pic(X) = ZH, where H is the restriction of the Plücker class of Gr(2, V ), and X
is a homogeneous space for the action of the stabilizer of λ in GL(V ), which is the
simple algebraic group G2.

The composition of the embedding of X with the Plücker embedding of
Gr(2, V ) factors through the projectivization of the adjoint (14-dimensional) rep-
resentation of G2, which can be described as

W = Ker(∧2V
λ−−−−→ V ∨) ⊂ ∧2V, (2.5.1)

and, moreover, X = Gr(2, V ) ∩ P(W ), although the intersection is highly non-
transverse.

Let U0 ⊂ V be a two-dimensional subspace annihilated by λ and let x0 ∈ X
be the corresponding point. If u′

0, u
′′
0 is a basis of U0, the 2-forms

λ′ = λ(u′
0,−,−) and λ′′ = λ(u′′

0 ,−,−)
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annihilate U0, hence induce 2-forms on the five-dimensional quotient space

V + = V/U0,

so we can write λ′, λ′′ ∈ ∧2(V +)∨. We define

X+ ⊂ Gr(2, V +) = Gr(2, 5)

as the zero locus of λ′ and λ′′, considered as sections of OGr(2,V +)(1). Note that

Gr(2, V +) can be identified with the subvariety of Gr(4, V ) parameterizing sub-
spaces which contain U0.

Lemma 2.13. The variety X+ is a smooth quintic del Pezzo fourfold, and

Q := Fl(2, 4;V )×Gr(2,V )×Gr(4,V ) (X×X+)

is a flat family of conics on X passing through x0 and parameterized by X+.

Proof. For the first statement recall from [DK18, Proposition 2.24] that a linear
section of Gr(2, V +) is smooth of expected codimension if and only if the locus
of rank-2 forms among the equations of the linear section is smooth of expected
codimension. So, to show that X+ is a smooth fourfold we need to check that
the locus of rank-2 forms in the pencil generated by λ′ and λ′′ is empty. But it
is a classical fact, that λ(v,−,−) for any 0 �= v ∈ V has rank at least 4 (see,
e.g., [Kuz16, Lemma 3.5]), so the first statement follows.

For the second statement we note that the fiber of the map qQ : Q → X+

over the point [U+] corresponding to a two-subspace U+ ⊂ V + is equal to the
intersection Gr(2, U0⊕U+)∩P(W ) (where we implicitly have chosen a splitting of
V into the sum U0 ⊕ V + and using it consider U+ as a subspace of V ). By (2.5.1)
we have

∧2 (U0 ⊕ U+) ∩W = Ker
(
∧2(U0 ⊕ U+) ↪−−−→ ∧2V

λ−−−−→ V ∨). (2.5.2)

On the other hand, λ restricts trivially to U0 ⊕ U+; indeed, if u′
+, u

′′
+ is a basis of

the space U+ then

λ(u′
0, u

′′
0 , u

′
+) = λ(u′

0, u
′′
0 , u

′′
+) = 0

because λ annihilates U0, and

λ(u′
0, u

′
+, u

′′
+) = λ(u′′

0 , u
′
+, u

′′
+) = 0

because λ′ and λ′′ vanish on U+. Therefore, the map ∧2(U0 ⊕ U+) → V ∨ in the
right side of (2.5.2) factors through the subspace (U0⊕U+)⊥ ⊂ V ∨ of dimension 3,
hence

dim(∧2(U0 ⊕ U+) ∩W ) ≥ 3.

This means that the fiber Q[U+] = Gr(2, U0 ⊕ U+) ∩ P(∧2(U0 ⊕ U+) ∩W ) of qQ
is either a conic, or a plane, or a quadric of dimension at least 2. But X contains
neither planes, nor quadric surfaces [KR13, Lemma 3], hence Q[U+] is a conic for

each [U+], so Q → X+ is a flat conic bundle. Each of the conics Q[U+] passes
through x0 by construction. �
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Lemma 2.14. We have F1(X, x0) ∼= P(U0) ∼= P1 and the morphism (2.1.2) is a P2-
bundle. In particular, the scheme F1(X, x0) is smooth, F1(Q/X+, x0) is smooth
over F1(X, x0), connected, and

dim(F1(Q/X+, x0)) = 3 = dim(X) − 2.

Proof. A line �(V1, V3) ⊂ Gr(2, V ) defined in (2.3.1) lies on X if an only if V3 is
contained in the kernel of the 2-form λ(V1,−,−). Such V3 exists only if the rank
of λ(V1,−,−) is at most 4. Points [V1] ∈ P(V ) with this property are parameterized
by a smooth quadric Q ⊂ P(V ) (see, e.g., [Kuz16, Lemma 3.5]). Moreover, for any
such [V1] the rank of λ(V1,−,−) is exactly 4, so V3 is determined by V1. This
proves that F1(X) ∼= Q. The line �(V1, V3) contains [U0] if and only if V1 ⊂ U0,
hence F1(X, x0) = P(U0).

Furthermore, the fiber of the morphism F1(Q/X+, x0) → F1(X, x0) over a
point [V1] ∈ P(U0) is the locus of all [U+] ∈ X+ such that V3 := Ker(λ(V1,−,−))
is contained in U0 ⊕ U+. Equivalently, this is the locus of U+ such that

V3/U0 ⊂ U+ ⊂ Ker(λ(U0, V3,−))/U0.

But λ(U0, U0,−) = λ(V1, V3,−) = 0 by definition, hence

dim(Ker(λ(U0, V3,−))/U0) = 4

and so the fiber over [V1] is P2. This proves that the morphism is a P2-bundle. �
Recall [Tod30], [DIM12, 3.3] that the Hilbert scheme of planes on the quin-

tic del Pezzo fourfold X+ has two components. The first component is isomor-
phic to P1. In fact, using the argument of Lemma 2.14 it can be identified with
F1(X, x0) in such a way that the universal plane on X+ coincides with the P2-
bundle F1(Q/X+, x0) → F1(X, x0). Thus, the threefold F1(Q/X+, x0) is the nor-
malization of the divisor on X+ swept by planes of the first type (this divisor is a
hyperplane section of X+ singular along the plane Π ⊂ X+ described below).

The second component of the Hilbert scheme of planes is a single point, and
corresponds to a special plane Π ⊂ X+. In fact, Π = Gr(2, V +

3 ) ⊂ Gr(2, V +),
where V +

3 ⊂ V + is the unique three-dimensional subspace isotropic for all two-
forms in the pencil generated by λ′ and λ′′.

We denote byH+ ∈ Pic(X+) the restriction of the Plücker class of Gr(2, V +).

Proposition 2.15. For X, X+, and Q defined above the assumptions of Theo-
rem 2.2 are satisfied. Moreover, the bundle E fits into exact sequence (2.5.3) and
the bundle E0 has the form

E0
∼= OX+(−H+)

while the map σ+◦ψ : Blx0(G2Gr(2, V )) ��� X+ from (2.1.4) is given by the linear
system |H− 2E|.

Proof. Assumption (i) of Theorem 2.2 is proved in Lemma 2.13.
By Lemma 2.13 the fiber of the natural morphims pQ : Q → X over the

point [U ] ∈ X = G2Gr(2, V ) corresponding to a subspace U ⊂ V parametrizes all
four-dimensional subspaces of V that contain U0 and U and to which λ restricts
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trivially. If U ∩U0 = 0, the subspace U0 ⊕ U is unique with this property (see the
proof of Lemma 2.13). Therefore, the map pQ is birational, hence assumption (ii)
is satisfied.

Assumption (iii) is proved in Lemma 2.14.

Furthermore, the proof of Lemma 2.13 shows that the vector bundle Ẽ is
defined by the exact sequence

0 −−→ Ẽ −−→ ∧2(U0 ⊗ O ⊕U +)
λ−−−−→ (U0 ⊗ O ⊕U +)⊥ −−→ 0,

whereU + is the tautological bundle onX+ ⊂ Gr(2, V +). Moreover, the section sx0

corresponds to the subbundle of ∧2U0 ⊗ O in ∧2(U0 ⊗ O ⊕ U +). Therefore, the
bundle E is defined by the exact sequence

0 −−→ E −−→ U0 ⊗U + ⊕ ∧2U + λ−−−−→ (U0 ⊗ O ⊕U +)⊥ −−→ 0.

If the first component

λ1 : U0 ⊗U + −−−→ (U0 ⊗ O ⊕U +)⊥

of the above map is not surjective at a point [U+] of X+ then there is a point
[V +

1 ] ⊂ P(V +) \ P(U+) such that

λ′(U+, V +
1 ) = λ′′(U+, V +

1 ) = 0.

Then the space U+ ⊕ V +
1 is isotropic for λ′ and λ′′, hence [U+] ∈ Π.

This means that the cokernel of λ1 is a line bundle on Π. Therefore, its
kernel is a line bundle on X+, and a computation of the determinant shows
that it is isomorphic to OX+(−H+). Taking into account the natural isomorphism
∧2U + ∼= OX+(−H+), the diagram chase then gives the exact sequence

0 −−→ OX+(−H+) −−→ E −−→ OX+(−H+) −−→ OΠ(−1) −−→ 0. (2.5.3)

It is easy to see that this identifies E0 with the subsheaf OX+(−H+).

The fact that the map σ+ ◦ ψ is given by the linear system |H− 2E| follows
from Lemma 2.4. �

Remark 2.16. In this case the natural morphism E0 → E is an embedding of
sheaves, but not a fiberwise monomorphism. As a consequence, the subvariety
PX+(E0) ⊂ PX+(E ) is only a rational section of the P1-bundle PX+(E ) → X+; in
fact, PX+(E0) ∼= BlΠ(X

+).

3. Mukai varieties of genus 7, 8, and 10

In this section we describe the birational transformations of linear sections of
varieties X from the previous section and as a consequence prove rationality of
higher-dimensional Mukai varieties of genus g ∈ {7, 8, 10}.
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3.1. Forms of linear sections

We use the notation introduced in §§2.1–2.2. The main result of this section is the
following.

Theorem 3.1. Let X ⊂ P(W ) be a smooth projective variety over the field k̄ and
let Q ⊂ X ×X+ be a flat family of m-dimensional quadrics on X parameterized
by a smooth projective variety X+ such that the assumptions of Theorem 2.2 and
Lemma 2.4 are satisfied. Assume that X is a smooth projective variety over k with
a point x0 ∈ X(k) such that Xk̄ is isomorphic to a transverse linear section of X
of codimension c ≤ m, the class H|Xk̄

is defined over k, and

dim(F1(X,x0)) ≤ dim(F1(X, x0))− c+ 1. (3.1.1)

Then there is a diagram

X̃

σ

��

ψ ������������

φ



�
��

��
��

��
� X̃+

σ+

��

φ+

�����
���

���
��

X X̄ X+

(3.1.2)

defined over k, where

• σ is the blowup of x0,
• σ+ is a projective morphism with general fiber Pm−c;
• ψ is a birational map.

In particular, X+ is defined over k.

Moreover, if E ⊂ X̃ is the exceptional divisor of σ, its strict transform
ψ∗(E) ⊂ X̃+ is defined over k and intersects the general fiber of σ+ along a
hyperplane. In particular, X is birational to X+ × Pm−c.

Proof. We denote n := dim(X). First, we construct diagram (3.1.2) over k̄ and
then check that it is defined over k. So, assume for now that X is a k̄-variety.

By assumption, we have an embedding X ↪→ X. Using it we consider x0 as a
point of X. Consider the diagram (2.1.4) and denote by X̃ := Blx0(X) the strict

transform of X in Blx0(X) and by X̄ := φ(X̃) the image of X̃ in X.

Since X is a complete intersection in X of divisors in the linear system |H|
which pass through the point x0, its strict transform X̃ is a complete intersection
in Blx0(X) of divisors in the linear system |H| = |H−E|. Therefore,

X̃ = φ−1(X̄).

Moreover, by (2.1.6) the morphism φ : X̃ → X̄ is an isomorphism over the comple-
ment of the subscheme F1(X,x0) = F1(X, x0)∩X̄ . By (3.1.1) and assumption (iii)
in Theorem 2.2 we have

dim(F1(X,x0)) ≤ dim(F1(X, x0))− c+ 1 ≤ n− c− 2 = dim(X̄)− 2.
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Furthermore, using the fact that φ+ is a projective bundle over F1(X, x0) we
conclude that

dim(φ−1
+ (F1(X,x0))) ≤ dim(φ−1

+ (F1(X, x0)))− c+ 1

= dim(F1(Q/X+, x0))− c+ 1 = n− c− 1. (3.1.3)

Let

X̃+ := φ−1
+ (X̄) ⊂ PX+(E ).

On the one hand, X̃+ is an intersection of c divisors from the linear system |H|,
hence we have dim(X̃+) ≥ n− c. On the other hand, by (2.1.6) we have

X̃+ \ φ−1
+ (F1(X,x0)) = X̄ \ F1(X,x0) = X \L (X,x0)

is irreducible of dimension n − c. These two observations combined with (3.1.3)

imply that X̃+ is irreducible of dimension n − c (in particular it is a complete
intersection in PX+(E ), hence Cohen–Macaulay), and that ψ is a birational map.
Similarly, using (2.1.7) instead of (2.1.6) we deduce that

dim(X̃+ ∩ PX+(E0)) = n− c− 1, (3.1.4)

hence it is a divisor in X̃+.
SinceH is a relative hyperplane section for PX+(E ), the complete intersection

X̃+ ⊂ PX+(E ) corresponds to a morphism

ξ : E −−−−→ O⊕c
X+ (3.1.5)

of vector bundles, and similarly, the divisor ψ∗(E) = X̃+ ∩ PX+(E0) corresponds
to the morphism

ξ0 = ξ|E0 : E0 −−−−→ O⊕c
X+ . (3.1.6)

If the morphism ξ0 is not generically surjective then the general fiber of its kernel
is a vector space of dimension at least m− c+ 1, hence

dim(X̃+ ∩ PX+(E0)) ≥ dim(X+) + (m− c) = n− c,

contradicting to (3.1.4).
Thus ξ0 and hence a fortiori ξ is generically surjective. Therefore, the mor-

phism σ+ : X̃+ → X+ is generically the projectivization of a vector bundle of
rank m+ 1 − c, so the general fiber of σ+ is Pm−c. Moreover, it also follows that
the divisor PX+(E0) ⊂ PX+(E ) cuts a hyperplane in the general fiber of σ+. This
shows that we have diagram (3.1.2) over k̄ and proves its properties.

It remains to show that the diagram is defined over k if X is and x0 ∈ X(k).

First, X and its blowup X̃ at x0 are defined over k. Next, the divisor classes
H = H|X and E = E|X̃ are defined over k, hence the morphism φ (given by the
linear system |H − E|) and its image X̄ are defined over k. Similarly, the map
σ+ ◦ψ (given by the linear system |(r−m− 1)H − (n−m− 2)E|, see Lemma 2.4)
and its image X+ are defined over k. Finally, the map ψ can be defined as the
product X ��� X̄ ×X+ of the two maps above, hence it is defined over k, hence
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so is its image X̃+. It also follows that the divisor ψ∗(E) = X̃+ ∩ PX+(E0) ⊂ X̃+

is defined over k.
To conclude, we see that X is birational to X̃+, which has a map to X+ with

general fiber Pm−c and with a relative hyperplane ψ∗(E) defined over k, hence is
birational to X+ × Pm−c. �

Remark 3.2. Suppose the assumptions of Theorem 3.1 are satisfied, but c = m+1.
Then the same argument proves that the morphism ξ is generically an isomor-
phism and X is birational to X̃+, which itself is birational to the discriminant
locus D(ξ) ⊂ X+ of ξ. Moreover, the morphism X̃+ → D(ξ) is the Springer (par-
tial) resolution of D(ξ). Using the other Springer resolution, we can construct the
subvariety

X̃++ ⊂ X+ × Pm,

which is birational to X̃+ (and hence to X) and is equal to the zero locus of
the global section of the vector bundle E ∨ � OPm(1). The induced projection

X̃++ → Pm can provide an additional information about X , see Remarks 3.4–
3.6 below.

3.2. Rationality of Mukai varieties

In this section we apply Theorem 3.1 to Mukai varieties of genus g ∈ {7, 8, 10}.
We prove the following

Theorem 3.3. Let X be a smooth Mukai variety of genus g ∈ {7, 8, 10} and di-
mension n ≥ 4. If X(k) �= ∅, then X is k-rational.

Proof. LetX be a smooth Mukai variety of genus g ∈ {7, 8, 10} and letX = X2g−2

be the maximal Mukai variety over k̄ of the same genus, i.e., X = OGr+(5, 10),
Gr(2, 6), or G2Gr(2, 7). By Theorem 1.1 the variety Xk̄ is a transverse linear sec-
tion of X. Moreover, by adjunction the class H|Xk̄

is a fraction of the canonical
class of Xk̄, hence is Galois-invariant, so since X(k) �= ∅, it is defined over k. By
Propositions 2.10, 2.12, and 2.15 the assumptions of Theorem 2.2 and Lemma 2.4
are satisfied for X. Recall that the corresponding varieties X+ are P4, Gr(2, 4),
and the quintic del Pezzo fourfold.

We check below that assumption (3.1.1) also holds. Indeed, assume to the
contrary that

dim(F1(X,x0)) ≥ dim(F1(X, x0))− c+ 2.

Note that dim(F1(X, x0)) = dim(X)−4 for each of the maximal Mukai varieties X
(this easily follows from Lemmas 2.11, 2.9, and 2.14), hence the above inequality
implies that

dim(L (X,x0)) = dim(F1(X,x0)) + 1 ≥ dim(X) − 4− c+ 2 + 1 = dim(X)− 1.

In other words, the subvariety of X swept by lines through x0 contains a divisor,
say D. Since ρ(X) = 1, this divisor is a multiple of the hyperplane class. On the
other hand, D is contained in the intersection of X with the embedded tangent
space of X at x0. But since X is not a hypersurface, the embedded tangent space
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is contained in the intersection of at least two hyperplanes, hence D cannot be a
multiple of the hyperplane class.

This shows that the assumptions of Theorem 3.1 are satisfied. We deduce
from it that X is k-birational to X+×Pm−c. On the other hand, X+ has a k-point
by Nishimura lemma, and since it is a k-form of P4, Gr(2, 4), or a quintic del Pezzo
fourfold, it follows that X+ is k-rational (see [KP19, Propositions 2.5 and 2.6 and
Remark 3.4]). Consequently, X is k-rational as well. �

Using Remark 3.2 we can also describe birationally Mukai threefolds of
genus g ∈ {7, 8, 10}.

Remark 3.4. If X is a Mukai threefold of genus g = 7 we conclude from Remark 3.2
and Proposition 2.12 that X is birational to the zero locus X̃++ of the section ξ
of the vector bundle

E ∨ � O(1) ∼= (Ω2(3)� O(1))⊕ (O(1)� O(1))

on X+ × P6 = P4 × P6. It is easy to show that the zero locus of the component ξ0
of ξ in the first summand is isomorphic to the projectivization of a rank-2 vector
bundle on a (possibly singular) quintic del Pezzo threefold X++ (the number of
its singular points is equal to the number of lines on X through x0). It follows

that X̃++ is isomorphic to the blowup of X++ along a curve; in particular, X is
birational to X++, hence is k-rational (rationality of singular quintic del Pezzo
threefolds can be proved by the argument of [KP19, Theorem 3.3]). This provides
a more direct proof of the rationality criterion [KP19, Theorem 1.1(ii)] for X .

Remark 3.5. If X is a Mukai threefold of genus g = 8 we conclude from Remark 3.2
and Proposition 2.10 that X is birational to the zero locus X̃++ of the section ξ
of the vector bundle

E ∨ � O(1) ∼= (U∨
0 ⊗ (U +)∨ � O(1))⊕ (O(1)� O(1))

on X+ × P4 = Gr(2, 4) × P4. It is easy to show that the zero locus of the com-
ponent ξ0 of ξ in the first summand is isomorphic to the blowup of P4 along a
normal rational quartic curve and, furthermore, X̃++ is isomorphic to the blowup
of a cubic threefold passing through that curve.

Remark 3.6. If X is a Mukai threefold of genus g = 10 we conclude from Re-
mark 3.2 and Proposition 2.15 that X is birational to the zero locus X̃++ of the
section ξ of the vector bundle E ∨ � O(1) on X+ × P1, where E is defined by the

exact sequence (2.5.3). It is easy to show that the induced morphism X̃++ → P1

is a fibration in sextic del Pezzo surfaces. One can check that this morphism is
given by the linear system |H−3E| and generalizes the Mori fiber space of [KP19,
Theorem 5.17(iii)] to the case when F1(X,x0) �= ∅.
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4. Mukai varieties of genus 9

In this section we discuss the maximal Mukai variety X = X16 = LGr(3, 6) of
genus 9, its linear sections and their forms over non-closed fields. First, we construct
a Sarkisov link for X starting with the blowup of a point (we state the theorem
in §4.1 and prove it in §4.2), analogous to those constructed in Theorem 2.2. After
that in §4.3 we deduce implications for Mukai varieties of genus 9.

4.1. The statement

Let U0 be a three-dimensional vector space (later it will correspond to a point
of LGr(3, 6)). Consider the Veronese surfaces

S ⊂ P(S2U0), S∨ ⊂ P(S2U∨
0 ),

the images of the Veronese embeddings P(U0) ↪→ P(S2U0) and P(U∨
0 ) ↪→ P(S2U∨

0 )
of degree 2. Furthermore, denote by K ⊂ P(S2U0) and K∨ ⊂ P(S2U∨

0 ) the secant
varieties of S and S∨, respectively (so-called, chordal cubic fourfolds [SR49, 3.11–
3.12]), so that

S = Sing(K) ⊂ K ⊂ P(S2U0), S∨ = Sing(K∨) ⊂ K∨ ⊂ P(S2U∨
0 ). (4.1.1)

These geometric data give rise to a classical birational transformation (see, e.g.,
[CK89, Theorem 3.3], [AS16, Theorem 6]).

Lemma 4.1. There is an isomorphism BlS∨(P(S2U∨
0 ))

∼= BlS(P(S2U0)) which fits
into the following symmetric diagram

F∨ � � �� BlS∨(P(S2U∨
0 ))

κ∨

�����
���

���
��

BlS(P(S2U0))

κ

����
���

���
��

F	
���

S∨ �
� �� P(S2U∨

0 ) P(S2U0) S,	 ���

where

• κ and κ∨ are the blowups of the Veronese surfaces S and S∨ respectively,
• F and F∨ are the corresponding exceptional divisors,
• the morphisms κ : F → S and κ∨ : F∨ → S∨ are P2-bundles,
• κ(F∨) = K and κ∨(F) = K∨ and the maps κ : F∨ → K and κ∨ : F → K∨

are the blowups with centers in S and S∨, respectively.
The fibers of the map κ∨ : F∨ → S∨ are mapped by κ to planes in P(S2U0)

intersecting S along smooth conics, and analogously for the fibers of κ.
Finally, the maps

κ∨◦κ−1 : P(S2U0) ������ P(S2U∨
0 ) and κ◦(κ∨)−1 : P(S2U∨

0 ) ������ P(S2U0)

are given by the complete linear systems of quadrics through S and S∨, respectively.

Now let V be a six-dimensional symplectic vector space. Define

W := Ker
(
∧3V −−→ V

)
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(the morphism is given by convolution with the symplectic form). This is a fun-
damental 14-dimensional representation of the symplectic group Sp(V ), and

X = LGr(3, V ) ⊂ P(W )

is the orbit of the highest weight vector. We denote by H the restriction to X of
the hyperplane class of P(W ).

Let x0 ∈ X be a point and let U0 ⊂ V be the corresponding three-dimensional
isotropic subspace.

Lemma 4.2. There is a natural isomorphism F1(X, x0) ∼= P(U∨
0 ).

Proof. Recall that any line on Gr(3, V ) has the form

�(V2, V4) = {[U ] | V2 ⊂ U ⊂ V4},
where V2 ⊂ V4 ⊂ V is a flag with dim(Vi) = i. Such a line is contained in LGr(3, V )
if and only if the restriction of the symplectic form to V4 contains V2 in the kernel;
equivalently, if V2 is isotropic and V4 = V ⊥

2 is the orthogonal of V2 with respect
to the symplectic form. Furthermore, the line �(V2, V

⊥
2 ) contains [U0] if and only

if V2 ⊂ U0. Therefore, F1(X, x0) = Gr(2, U0) ∼= P(U∨
0 ). �

We choose a Lagrangian direct sum decomposition V = U0 ⊕ U∨
0 ; it induces

a direct sum decomposition of W that has the following form

W ∼= det(U0)⊕
(
S2U∨

0 ⊗ det(U0)
)
⊕
(
S2U0 ⊗ det(U∨

0 )
)
⊕ det(U∨

0 ), (4.1.2)

and the point x0 corresponds to the first summand det(U0) in the right side. We
consider the blowup σ : Blx0(X) → X and denote by E its exceptional divisor.

Consider the last two summands in (4.1.2) (we ignore the twist by det(U∨
0 )

for simplicity)

W+ := S2U0 ⊕ k. (4.1.3)

We denote by H+ the hyperplane class of P(W+). Consider the chain of embed-
dings

S ↪−−−→ P(S2U0) ↪−−−→ P(W+),

the blowup σ+ : BlS(P(W+)) → P(W+) and denote by E+ its exceptional divisor
and by

Z+ ∼= BlS(P(S
2U0)) ⊂ BlS(P(W

+)) (4.1.4)

the strict transform of the hyperplane P(S2U0) ⊂ P(W+). Note that

Z+ ∼ H+ −E+. (4.1.5)

Lemma 4.3. The linear systems |H−E| on Blx0(X) and |2H+−E+| on BlS(P(W+))
are base point free. Moreover, if

W :=
(
S2U∨

0 ⊗ det(U0)
)
⊕
(
S2U0 ⊗ det(U∨

0 )
)
⊕ det(U∨

0 ), (4.1.6)

is the quotient of W by the first summand det(U0), see (4.1.2), then

H0(Blx0(X),O(H−E)) ∼= W∨ ∼= H0(BlS(P(W
+)),O(2H+ −E+)).
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In particular, the hyperplane W∨ ⊂ W∨ corresponds to the point

x0 ∈ LGr(3, U0 ⊕ U∨
0 ) ⊂ P(W ).

Proof. The first statement is easy, because the point x0 ∈ X and the surface
S ⊂ P(W+) are intersections of hyperplanes (resp. quadrics) inX (resp. in P(W+)),
as schemes.

Furthermore, the first of the isomorphisms follows immediately from (4.1.2)
and (4.1.6). For the second consider the exact sequence (here we use (4.1.5))

0 −−→ OBlS(P(W+))(H
+)

Z+

−−−→ OBlS(P(W+))(2H
+ −E+)

−−→ OBlS(P(S2U0))(2H
+ −E+) −−→ 0.

(4.1.7)

The cohomology of the first term is (W+)∨, and the cohomology of the last is S2U0

(by (4.1.4) and Lemma 4.1). Summing up and dualizing, we obtain the required
isomorphism. �

Now we are ready to state the theorem. Recall that F1(X, x0) denotes the
Hilbert scheme of lines onX passing through x0 andL (X, x0) is the corresponding
universal line. Recall also that by Lemma 4.2 we have F1(X, x0) ∼= S∨ and by
Lemma 4.1 we have F∨ ⊂ BlS(P(S2U0)) ⊂ BlS(P(W+)) and that F∨ → S∨ is a
P2-bundle.

Theorem 4.4. Let X = LGr(3, V ). There is a commutative diagram

D̂� �

��

p

�����
���

���
���

p+

����
���

���
���

���

L (X, x0)� �

��

X̂

π
�����

���
���

���

π+ ����
���

���
���

�� F∨
� �

��
Blx0

(X)

σ

��

ψ ������������

φ

����
���

���
���

�
BlS(P(W+))

σ+

��

φ+

�����
���

���
���

�

X X P(W+),

(4.1.8)

where

• σ is the blowup of the point x0,
• σ+ is the blowup of the Veronese surface S ⊂ P(W+), where W+ is defined

in (4.1.3),
• φ is the morphism induced by the linear projection from x0,
• φ+ is the morphism given by the linear system of quadrics in P(W+)

through S,
• X = φ(Blx0(X)) = φ+(BlS(P(W+))) ⊂ P(W ), where W is defined in (4.1.6),
• π is the blowup of L (X, x0) ⊂ Blx0(X),
• π+ is the blowup of F∨ ⊂ BlS(P(W+)),
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• D̂ is the common exceptional divisor of π and π+,

D̂ ∼= L (X, x0)×S∨ F∨,

• ψ = π+ ◦ π−1 = φ−1
+ ◦ φ is an antiflip.

If H and H+ are the pullbacks to Blx0(X) and BlS(P(W+)) of the hyperplane
classes of X and P(W+), respectively, and E ⊂ Blx0(X) and E+ ⊂ BlS(P(W+))
are the exceptional divisors of σ and σ+, then there are the following relations{

H+ = H− 2E,

E+ = H− 3E,
and

{
H = 3H+ − 2E+,

E = H+ − E+,
(4.1.9)

in Pic(Blx0(X)) = Pic(BlS(P(W+))), identified via ψ. In particular, the hyperplane
class H of P(W ) when pulled back to Blx0(X) and BlS(P(W+)) can be written as

H = H−E = 2H+ −E+.

4.2. The proof

In this section we prove Theorem 4.4. It will be more convenient to construct the
diagram “from right to left”. We start with some preparations.

Lemma 4.5. The linear system |3H+ − 2E+| defines a birational map

α̃ : BlS(P(W
+)) ������ LGr(3, U0 ⊕ U∨

0 ). (4.2.1)

Proof. Consider the matrix

α =

⎛⎝u0 0 0 u11 u12 u13

0 u0 0 u12 u22 u23

0 0 u0 u13 u23 u33

⎞⎠ , (4.2.2)

where (u0 : u11 : u12 : u13 : u22 : u23 : u33) are homogeneous coordinates on
P(W+) such that u0 = 0 is the equation of the hyperplane P(S2U0) ⊂ P(W+) and
the restriction of uij to this hyperplane form a standard system of coordinates,
in which S is defined by minors of size 2 of the submatix of α formed by the last
three columns (and consequently, the chordal cubic K ⊂ P(S2U0) is defined by
the determinant of that submatix). The matrix α defines a rational map

P(W+) ������ Gr(3, 6) = Gr(3, U0 ⊕ U∨
0 )

which we also denote by α.
The restriction of α to the affine space

S2U0 = P(W+) \ P(S2U0) = {u0 �= 0} ∼= A6

takes a point of S2U0 to the graph of the corresponding symmetric morphism
U∨
0 → U0. This graph is a Lagrangian subspace for the natural symplectic form

on U0 ⊕ U∨
0 , hence α induces an isomorphism of P(W+) \ P(S2U0) onto the open

Schubert cell in LGr(3, U0 ⊕ U∨
0 ), parameterizing Lagrangian subspaces which do

not intersect U0. This also proves that α factors as the composition

P(W+) ������ LGr(3, U0 ⊕ U∨
0 ) ⊂ Gr(3, U0 ⊕ U∨

0 )

where the first arrow is birational.
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Furthermore, note that Plücker coordinates on Gr(3, 6) correspond to the
minors of size 3 of (4.2.2); these are cubic polynomials in coordinates that can be
written as

u3
0, u2

0uij , u0(uijui′j′ − uij′ui′j), det(uij),

1 ≤ i ≤ j ≤ 3, 1 ≤ i′ ≤ j′ ≤ 3,
(4.2.3)

(note that the four groups above correspond to the four summands in (4.1.2) taken
in the opposite order). It is straightforward to see that each of these polynomials
vanishes with multiplicity at least 2 on S, hence they generate a subsystem of
the linear system |3H+ − 2E+| on BlS(P(W+)). Moreover, the cohomology exact
sequences associated with the exact sequences of sheaves (4.1.7) and with a similar
sequence

0 −−→ OBlS(P(W+))(2H
+ −E+)

Z+

−−−→ OBlS(P(W+))(3H
+ − 2E+)

−−→ OZ+(3H+ − 2E+) −−→ 0
(4.2.4)

show that the cubic polynomials listed in (4.2.3) generate the complete linear
system |3H+− 2E+|. It follows that the target of the rational map defined by this
linear system coincides with LGr(3, 6). �

Recall the subvariety Z+ = BlS(P(S2U0)) ⊂ BlS(P(W+)) defined in (4.1.4).
From the description of Lemma 4.1 we know that it contains a smooth fourfold
F∨ ⊂ Z+. Furthermore, in the Picard group of Z+ we have the following linear
equivalence

F∨ ∼ (3H+ − 2E+)|Z+ , (4.2.5)

because F∨ is the strict transform of the chordal cubic K that has multiplicity 2
along S.

Now consider the blowup

π+ : X̂ := BlF∨(BlS(P(W
+))) −−−−→ BlS(P(W

+))

and let D̂ ⊂ X̂ be the exceptional divisor. Since F∨ is a divisor in Z+, the strict
transform of Z+ is isomorphic to Z+; we denote it by

Ẑ ⊂ X̂, Ẑ ∼= Z+.

Note that

Ẑ ∼ H+ −E+ − D̂. (4.2.6)

Lemma 4.6. The base locus of the linear system |3H+ − 2E+| on BlS(P(W+)) is
equal to F∨ as a scheme. In particular, the rational map α̃ defined in (4.2.1) lifts
to a regular birational morphism

α̂ : X̂ −−−−→ LGr(3, U0 ⊕ U∨
0 ).

such that α̂∗O(H) ∼= O(3H+ − 2E+ − D̂). The scheme preimage of the point

x0 ∈ LGr(3, U0 ⊕ U∨
0 ) under α̂ is the divisor Ẑ ⊂ X̂.
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Proof. Since the linear system |2H+ − E+| is base point free (Lemma 4.3), it
follows from sequence (4.2.4) that the base locus of the system |3H+ − 2E+|
on BlS(P(W+)) is equal to the base locus of the linear system |3H+−2E+| on Z+.
From (4.2.5) and Lemma 4.1 we deduce that this is F∨. Therefore, the linear

system |3H+− 2E+− D̂| on the blowup X̂ is base point free and defines the mor-

phism α̂, such that α̂∗O(H) ∼= O(3H+− 2E+− D̂). The morphism α̂ is birational
because α̃ is (Lemma 4.5).

For the last statement recall that by Lemma 4.3 the point x0 ∈ X corresponds

to the hyperplaneW∨ ⊂ W∨ = H0(X,O(H)). Therefore, the scheme α̂−1(x0) ⊂ X̂

is equal to the base locus of the corresponding subsystem in |3H+ − 2E+ − D̂|.
However, the proof of the equality W∨=H0(BlS(P(W+)),O(3H+−2E+)) in

Lemma 4.5 shows that the subspace W∨ ⊂ W∨ is the image of the top arrow in
the commutative diagram

H0(BlS(P(W+)),O(2H+ −E+))
Z+

�� H0(BlS(P(W+)),O(3H+ − 2E+))

H0(X̂,O(2H+ −E+))
Ẑ �� H0(X̂,O(3H+ − 2E+ − D̂)),

hence coincides with the image of the bottom map. Further, since the linear system
|2H+ − E+| is base point free (Lemma 4.3), it follows that the base locus of the

corresponding subsystem in |3H+ − 2E+ − D̂| is Ẑ, hence α̂−1(x0) = Ẑ. �

Since the preimage of the point x0 is the Cartier divisor Ẑ ⊂ X̂, we obtain
from Lemma 4.6 and (4.2.6) the following

Corollary 4.7. The morphism α̂ factors as the composition

X̂
π−−→ Blx0(X)

σ−−→ X,

where σ is the blowup of the point x0 and π is birational. Moreover,

π∗O(H) ∼= O(3H+ − 2E+ − D̂), π∗O(E) ∼= O(H+ −E+ − D̂). (4.2.7)

Finally, we describe the divisor D̂ ⊂ X̂. We denote by h′ the line class of S∨.

Lemma 4.8. The divisor D̂ is isomorphic to the fiber product

D̂ ∼= PS∨(O ⊕ O(−2h′))×S∨ F∨. (4.2.8)

In particular, it has a structure of a (P1 × P2)-fibration over S∨. Moreover, we
have

deg(H+|D̂) = (0, 1), deg(E+|D̂) = (0, 2), deg(D̂|D̂) = (−1,−1),
(4.2.9)

where deg(−) stands for the bidegree on the fibers of the (P1 × P2)-fibration.
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Proof. Recall that D̂ is the exceptional divisor of the blowup π+, hence

D̂ ∼= PF∨(NF∨/BlS(P(W+))).

The chain of embeddings F∨ ⊂ Z+ ⊂ BlS(P(W+)) in view of (4.2.5) and (4.1.5)
gives rise to the normal bundle sequence

0 −−→ OF∨(3H+ − 2E+) −−→ NF∨/BlS(P(W+)) −−→ OF∨(H+ −E+) −−→ 0.

By Lemma 4.1 the divisor class (2H+ − E+)|F∨ is the pullback of 2h′ from S∨.
Therefore, after a twist the sequence can be rewritten as

0 −−→ OF∨ −−→ NF∨/BlS(P(W+))(2E
+ − 3H+) −−→ OF∨(−2h′) −−→ 0.

We have Ext1(OF∨(−2h′),OF∨) = H1(F∨,OF∨(2h′)) = H1(S∨,OS∨(2h′)) = 0
since F∨ → S∨ is a P2-bundle, hence

NF∨/BlS(P(W+))(2E
+ − 3H+) ∼= OF∨ ⊕ OF∨(−2h′), (4.2.10)

which proves (4.2.8). Thus, D̂ is a (P1 × P2)-fiber bundle over S∨.
By Lemma 4.1 the fibers of F∨ over S∨ project to (linearly embedded) planes

in P(W+) which intersect S along conics, therefore the classes H+ and E+ have

bidegrees (0, 1) and (0, 2) on the fibers of D̂. To find the bidegree of D̂|D̂ we

compute the canonical class of D̂.
By the blowup formula (applied to σ+ and π+) and adjunction we have

KD̂ = (−7H+ + 3E+ + 2D̂)|D̂.

Since the canonical class of P1 × P2 has bidegree (−2,−3), the result follows. �

Now we are ready to prove the theorem.

Proof of Theorem 4.4. Consider the morphism π : X̂ → Blx0(X) constructed in
Corollary 4.7. This is a birational morphism of smooth varieties, hence its excep-
tional locus is a divisor. Since

KX̂ = −7H+ + 3E+ + D̂, KBlx0
(X) = −4H+ 5E,

it follows from (4.2.7) that KX̂/Blx0(X) = 2D̂. But D̂ is the exceptional divisor

of π+, hence any its multiple is non-movable. Therefore, the exceptional divisor

of π is also D̂.
Since π and π+ have the same exceptional divisor, the birational map

ψ := π+ ◦ π−1 : Blx0(X) ������ BlS(P(W
+))

is small. In particular, it identifies the Picard groups of Blx0(X) and BlS(P(W+))

(with the quotient of the Picard group of X̂ by the class of D̂). The relations (4.1.9)
follow easily from (4.2.7). Moreover, the above calculation of the canonical classes
shows that ψ is an antiflip.

The relations (4.1.9) also imply the equality H−E = 2H+ −E+ in Pic(X̂).
Thus, for the morphisms φ : Blx0(X) → P(W+) and φ+ : BlS(P(W+)) → P(W+)
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defined by the base point free linear systems |H−E| and |2H+−E+|, respectively
(see Lemma 4.3), we have

φ ◦ π = φ+ ◦ π+.

Hence the middle square in diagram (4.1.8) commutes.

It remains to show that π is the blowup of L (X, x0), where the embedding

L (X, x0) ↪→ Blx0(X)

is constructed in the same way as in Lemma 2.8.

Denote by p : D̂ → PS∨(O ⊕ O(−2h′)) and p+ : D̂ → F∨ the projections of
the fiber product (4.2.8) to the factors. Note that p is a P2-bundle and p+ is a
P1-bundle. It follows from (4.2.7) and (4.2.9) that

deg(H|D̂) = deg(E|D̂) = (1, 0).

Since H and E generate Pic(Blx0(X)), we conclude that the restriction of π to D̂
factors through the contraction p and takes the fibers of p+ to strict transforms of
lines on X passing through x0. Therefore, it induces a morphism S∨ → F1(X, x0)
which induces a surjective map

L (X, x0)×F1(X,x0) S
∨ −−−→ π(D̂).

Moreover, the fibers of the morphism D̂ → π(D̂) are P2-bundles over the fibers
of S∨ → F1(X, x0), hence by Zariski’s main theorem the latter are connected.
Since also F1(X, x0) ∼= P2 ∼= S∨ by Lemma 4.2 it follows that either the map

S∨ → F1(X, x0) is constant or is an isomorphism. In the first case π(D̂) is a single

line that contradicts the formula KX̂/Blx0(X) = 2D̂ proved above. Therefore

π(D̂) = L (X, x0) ⊂ Blx0(X).

Finally, applying [Kuz18, Lemma 2.5] we conclude that the morphism π is the
blowup with center L (X, x0). �

4.3. Implications for genus 9 Mukai varieties

In this subsection we describe the birational transformations of linear sections
ofX = LGr(3, 6) induced by the link (4.1.8), and as a consequence prove rationality
of higher-dimensional Mukai varieties of genus g = 9.

Theorem 4.9. If X is a Mukai variety of genus 9 and dimension n ≥ 4 over k such
that X(k) �= ∅ then X is k-birational to a normal complete intersection X+ ⊂ P6

of 6 − n quadrics which contain a Veronese surface S ⊂ X+ defined over k such
that the divisor X+ ∩ 〈S〉 is k-rational.
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Proof. The argument of Theorem 3.1 (using link (4.1.8) instead of (2.1.4)) shows
that there is a diagram

X̃

σ

��

ψ ������������

φ



�
��

��
��

��
� X̃+

σ+

��

φ+

�����
���

���
��

X X̄ X+

(4.3.1)

defined over k, where X̃ = Blx0(X), X̄ = φ(X̃) is a linear section of codimen-

sion 6−n of X ⊂ P(W ), and X̃+ = φ−1
+ (X̄); the required inequality (3.1.1), which

in this case takes the form

dim(F1(X,x0)) ≤ n− 3,

is proved by the argument of Theorem 3.3.

By (4.1.9) the subvariety X̃+ ⊂ BlS(P(W+)) is a complete intersection of 6−n

divisors from the linear system |2H+−E+|. ThereforeX+ = σ+(X̃
+) is a complete

intersection of 6 − n quadrics which contain the Veronese surface S. Moreover,
S ⊂ X+ is the fundamental locus of σ+, hence is defined over k.

Similarly, the divisor X+ ∩ 〈S〉 is the image of the divisor X̃+ ∩ Z+, hence
by (4.1.9) it is the strict transform of the exceptional divisor E of σ. Therefore, it
is k-rational.

It remains to prove that X+ is normal. If n = 6, X+ = P6 and if n = 5, X+

is an irreducible quadric, so there is nothing to prove.

Finally, assume that n = 4 and X+ is not normal. Since X+ ⊂ P6 is a
complete intersection, we have dim(Sing(X+)) = 3. For a general P3 ⊂ P6 the
intersection X+ ∩ P3 is an irreducible curve of arithmetic genus 1, hence

Sing(X+ ∩ P3) = Sing(X+) ∩ P3

is a single point. Therefore, Sing(X+) is a linear 3-space in P6.

On the other hand, Theorem 4.4 implies that X+ \ K is isomorphic to an
open subscheme of X , hence smooth, hence Sing(X+) ⊂ X+ ∩K. But the chordal
cubic K does not contain linear spaces of dimension 3. This contradiction shows
that X+ is normal. �

Corollary 4.10. Let X be a Mukai variety of genus 9 over k such that X(k) �= ∅.
If dim(X) ≥ 5 then X is k-rational, and if dim(X) = 4 then X is k-unirational.

Proof. Theorem 4.9 proves that X is k-birational to the complete intersection of
quadrics X+, so it remains to show that X+ is k-rational or k-unirational.

If dim(X) = 6 then X+ = P6, hence is k-rational. Further, if dim(X) ∈ {4, 5}
then X+ is normal, hence codimX+(Sing(X+)) ≥ 2. Moreover, X+ contains a k-
rational hyperplane section, hence has a smooth k-point. If dim(X) = 5, so thatX+

is a quadric, it follows that X+ is k-rational, and if dim(X) = 4, so that X+ is an
intersection of two quadrics, it is k-unirational by [CTSSD87, Remark 3.28.3]. �
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It is unclear if a Mukai fourfold X of genus 9 with X(k) �= ∅ is always k-
rational; in fact we expect that this is not the case. However, we can prove the
following sufficient condition

Corollary 4.11. Let X be a Mukai fourfold of genus 9 over k such that X(k) �= ∅.
If X has a curve of odd degree defined over k then X is k-rational.

Proof. Let C ⊂ X be a curve of odd degree. Since X is k-unirational by Corol-
lary 4.10, we can choose a point x0 ∈ X(k) such that X+ is smooth and the
fundamental locus of the map σ+ ◦ ψ ◦ σ−1 does not intersect C. Then the im-
age of C in X+ is a curve of odd degree. Therefore, X+ is k-rational by [HT19,
Theorem 14]. �

Remark 4.12. Let Y ⊂ P6 be a smooth complete intersection of two quadrics. It is
easy to check that the Hilbert scheme of Veronese surfaces contained in Y is three-
dimensional. It would be interesting to describe this Hilbert scheme explicitly.

5. Fano threefolds of genus 12

In this section we give a new proof of the following theorem from [KP19].

Theorem 5.1. Let X be a prime Fano threefold of genus 12 over a field k of char-
acteristic 0. If X(k) �= ∅ then X is k-rational.

Recall from Theorem 1.1 that over an algebraically closed field any (smooth)
prime Fano threefold X of genus 12 is the zero locus of a section of the vector
bundle ∧2U ∨ ⊕ ∧2U ∨ ⊕ ∧2U ∨ on X = Gr(3, V ), where V is a vector space of
dimension 7 and U is the tautological rank-3 vector bundle. In §5.1 we show that
the same is true over any field of characteristic zero, then in §5.2 we construct a
birational transformation for X, and in §5.3 we check that it induces a birational
map between X and P3.

5.1. Vector bundles and Grassmannian embedding

We will need a version of [KP19, Lemma 2.4] for vector bundles. Recall that χ(E )
denotes the Euler characteristic of a coherent sheaf and that a vector bundle is
called simple if it has no non-scalar endomorphisms.

Proposition 5.2. Let X be a scheme over k and let E be a simple vector bundle on
the scheme Xk̄ such that g∗E ∼= E for any g ∈ Gal(k̄/k). Then there is a Brauer
class β ∈ Br(k) and a β-twisted vector bundle E0 on X such that E ∼= (E0)k̄.

Moreover, if X is projective then

χ(E ) · β = 0, (5.1.1)

and if the line bundle det(E ) ∈ Pic(Xk̄)
Gal(k̄/k) is defined over k then also

rank(E ) · β = 0. (5.1.2)
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Proof. For each g ∈ Gal(k̄/k) we choose an isomorphism φg : g
∗E ∼−−→ E . Then

for each pair (g1, g2) of elements in Gal(k̄/k) we have two isomorphisms

φg1g2 , φg2 ◦ g∗2φg1 : (g1g2)
∗E ∼= g∗2g

∗
1E −−−−→ E .

Since E is simple, these two isomorphisms differ by a nonzero scalar, hence there
is a collection

{cg1,g2 ∈ k̄×}g1,g2∈Gal(k̄/k) such that φg2 ◦ g∗2φg1 = cg1,g2φg1g2 .

It is easy to see that {cg1,g2} is a 2-cocycle for the Galois action on k̄×, and a dif-
ferent choice of isomorphisms φg results in replacing this cocycle by a coboundary.
If β ∈ H2(Gal(k̄/k), k̄×) = Br(k) is the cohomology class of this cocycle, then by
Galois descent the collection of isomorphisms φg defines a β-twisted vector bundle
E0 on X with the required property.

The proof of property (5.1.1) is analogous to the proof of [KP19, Lemma 2.4];
it is based on the fact, that after sufficiently ample twist the global sections of the
bundle E form a β-twisted vector space of dimension χ(E ), hence the Brauer
class β is killed by χ(E ).

Finally, the isomorphism E ∼= (E0)k̄ implies det(E ) ∼= det(E0)k̄. Note that
det(E0) is naturally (rank(E ) · β)-twisted. Therefore, if det(E ) is defined over k,
then rank(E ) · β = 0. �

Recall from [KPS18] the following result.

Lemma 5.3 ([KPS18, TheoremB.1.1, Proposition B.1.5, and Lemma B.1.9]). LetX
be a prime Fano threefold of genus 12 over an algebraically closed field of char-
acteristic 0. There is a unique stable globally generated vector bundle E of rank 2
on X with c1(E) = 1, c2(E) = 7, such that O and E form an exceptional pair.

Combining it with Proposition 5.2 we obtain the following

Corollary 5.4. Let X be a prime Fano threefold of genus 12 over a field k of
characteristic 0. There is a 2-torsion class βE ∈ Br(k) and a βE-twisted rank-2
vector bundle E0 on X such that (E0)k̄

∼= E, where E is the vector bundle from
Lemma 5.3.

Let X be a prime Fano threefold of genus 12 over a field k of characteristic 0.
By Theorem 1.1 there is an embedding Xk̄ ↪→ Gr(3, V ), where V is a vector space
of dimension 7, whose image is the zero locus of a section of the vector bundle
∧2U ∨⊕∧2U ∨⊕∧2U ∨, where U denotes the restriction to Xk̄ of the tautological
rank-3 bundle on Gr(3, V ). By [Kuz97, Theorem 2] (see also [Kuz96]) there is a
semiorthogonal decomposition

Db(Xk̄) = 〈O,U ∨, E,∧2U ∨〉, (5.1.3)

where E is the vector bundle from Lemma 5.3, i.e., (O,U ∨, E,∧2U ∨) is a full
exceptional collection in the bounded derived category of coherent sheaves on Xk̄.
We use it to prove the following
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Proposition 5.5. Let X be a prime Fano threefold of genus 12 over a field k of
characteristic 0. Then there exists a k-vector space V of dimension 7 and an
embedding X ↪→ Gr(3, V ) defined over k whose image is the zero locus of a section
of the vector bundle ∧2U ∨ ⊕ ∧2U ∨ ⊕ ∧2U ∨.

Proof. First, let us show that the exceptional collection (5.1.3) on Xk̄ is invariant
under the action of the Galois group Gal(k̄/k). Indeed, O is evidently Gal(k̄/k)-
invariant, and E is Gal(k̄/k)-invariant by Lemma 5.3. Therefore, for any element
g ∈ Gal(k̄/k) the bundle g∗U ∨ is exceptional and belongs to the subcategory

AXk̄
:= ⊥O ∩ E⊥ ⊂ Db(Xk̄).

As it was observed in [Kuz09, Theorem 4.1] this category is equivalent to the de-
rived category of representations of the quiver with two vertices and three arrows.
Any exceptional object in this category can be obtained by mutations of the stan-
dard exceptional pair (formed by the two projective modules), which under the
equivalence with AXk̄

correspond to the bundles V/U and U ∨. Therefore, the
ranks of exceptional objects in AXk̄

are given (up to sign) by the recursion

rn+2 = 3rn+1 − rn, r1 = 4, r2 = 3, n ∈ Z.

It is easy to see that rn > 3 for n �= 2, hence U ∨ is the only exceptional vector
bundle of rank 3 in AXk̄

, and therefore

g∗U ∨ ∼= U ∨

for any g ∈ Gal(k̄/k).
Now we apply Proposition 5.2 to the rank-3 bundle U ∨. We deduce that

there is a Brauer class β ∈ Br(k) and a β-twisted vector bundle E0 defined over k
such that U ∨ ∼= (E0)k̄. Since we have χ(U ∨) = dimH0(Xk̄,U

∨) = 7 it follows
from (5.1.1) that 7β = 0. On the other hand, the line bundle det(U ∨) ∼= ω−1

Xk̄
is

defined over k, hence 3β = 0 by (5.1.2). Therefore β = 0, hence E0 is untwisted,
i.e., U is defined over k.

Since Uk̄ induces an embedding Xk̄ ↪→ Grk̄(3, 7) whose image is the zero locus
of a section of the vector bundle ∧2U ∨̄

k
⊕∧2U ∨̄

k
⊕∧2U ∨̄

k
, it follows that U induces

an embedding X ↪→ Gr(3, 7), and the image has the analogous description. �
The next results are not needed below, but we provide them for completeness.

Corollary 5.6. For any smooth prime Fano threefold X of genus 12 over a field k
of characteristic 0 there is a unique vector bundle U of rank 3 such that (5.1.3)
holds. It induces an embedding X ↪→ Gr(3, V ) as in Proposition 5.5, equivariant
with respect to the action of Aut(X), and unique up to the action of PGL(V )
on Gr(3, V ).

Proof. The uniqueness of U is proved in Proposition 5.5; it implies uniqueness of
the embedding X ↪→ Gr(3, V ). It remains to show that this embedding is Aut(X)-
equivariant.

Since the bundle U onX is unique, it is invariant under the action of Aut(X).
Therefore, it is equivariant for an appropriate central extension G of Aut(X) and
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the embedding X ↪→ Gr(3, V ) is equivariant with respect to the action of G. But
the action of the kernel of G → Aut(X) on V is scalar, hence the action of G
on Gr(3, V ) factors through Aut(X), and hence the embedding X ↪→ Gr(3, V ) is
equivariant with respect to Aut(X). �
Corollary 5.7. Let X be a prime Fano threefold of genus 12 over a field k of char-
acteristic 0. Then Db(X) = 〈Db(k),Db(k),Db(k, βE),D

b(k)〉, where βE ∈ Br(k) is
a 2-torsion Brauer class.

Proof. By Proposition 5.5 the bundles O, U ∨, and ∧2U ∨ in (5.1.3) are defined
over k and by Corollary 5.4 the bundle E comes from a βE-twisted vector bundle E0

defined over k, where βE is a 2-torsion Brauer class. The collection of vector
bundles (O,U ∨, E0,∧2U ∨) gives the required semiorthogonal decomposition. �
Remark 5.8. One can construct an example of a smooth Fano threefold of genus 12
for which the Brauer class βE is nontrivial.

5.2. Birational transformation for Gr(3, 7)

Let X = Gr(3, V ) be the Grassmannian of three-dimensional subspaces in a seven-
dimensional vector space V . Let x0 ∈ X be a point and let U0 ⊂ V be the cor-
responding three-dimensional subspace. We denote by H the Plücker class on X
and by U the tautological rank-3 bundle on X. Furthermore, we consider the
four-dimensional vector space

V + := V/U0

and choose a splitting V = U0 ⊕ V +. Next, we consider the Grassmannian

Gr(3, V +) ∼= P((V +)∨) ∼= P3

and the tautological rank-3 bundle U + on it, and denote by H+ its hyperplane
class. Note that

V +/U + ∼= O(H+).

We denote by GrGr(3,V +)

(
3, U0⊗O⊕U +

)
the relative Grassmannian of three-

dimensional subspaces in the fibers of the rank-6 vector bundle U0⊗O⊕U + over
Gr(3, V +) and by σ+ its natural projection to Gr(3, V +). Consider the morphism
of vector bundles

ξ : U ↪−−−→ V ⊗ OX −−−−−� V + ⊗ OX, (5.2.1)

defined as the composition of the tautological embedding with the natural projec-
tion.

Proposition 5.9. There is a diagram of morphisms

BlZ(X)

σ

��  
  
  
  
 

GrGr(3,V +)

(
3, U0 ⊗ O ⊕U +

)
σ+

�����
����

����
����

X Gr(3, V +) P3,

where Z = D1(ξ) ⊂ X is the degeneracy locus of ξ and σ is the blowup morphism.
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Proof. Let U ′ ⊂ σ∗
+(U0 ⊗O ⊕U +) denote the tautological rank-3 bundle on the

relative Grassmannian GrGr(3,V +)

(
3, U0 ⊗ O ⊕U +

)
. The natural embedding

U ′ ↪−−−→ σ∗
+(U0 ⊗ O ⊕U +) ↪−−−→ (U0 ⊗ O)⊕ (V + ⊗ O) = V ⊗ O

induces a morphism

σ : GrGr(3,V +)

(
3, U0 ⊗ O ⊕U +

)
−−−−→ Gr(3, V ) = X

such that U ′ is the pullback of U (we will identify these bundles from now on).
We only need to show that this morphism is the blowup of the subscheme Z.

For this note that the pair of morphisms (σ, σ+) gives an embedding

GrGr(3,V +)

(
3, U0 ⊗ O ⊕U +

)
⊂ Gr(3, V )×Gr(3, V +)

and via this embedding GrGr(3,V +)

(
3, U0 ⊗ O ⊕ U +

)
can be identified with the

subscheme of pairs of three-dimensional subspaces (U,U+), where U+ ⊂ V + and
U ⊂ U0⊕U+ ⊂ U0⊕ V + = V . In other words, GrGr(3,V +)

(
3, U0⊗O ⊕U +

)
is the

zero locus for the section of the vector bundle

U ∨ � OGr(3,V +)(H
+)

defined by ξ. By [Kuz16, Lemma 2.1] to deduce the claim we only need to check for
each k ≥ 1 that the kth degeneracy locus Dk(ξ) of ξ has codimension at least k+1
(if non-empty).

Indeed, the first degeneracy locusD1(ξ) parameterizes three-dimensional sub-
spaces U ⊂ V such that dim(U ∩ U0) ≥ 1. This locus is birational to a Gr(2, 6)-
bundle over P(U0) = P2, hence has dimension 10 and codimension 2. Similarly,
the second degeneracy locus D2(ξ) parameterizes subspaces U ⊂ V such that
dim(U ∩ U0) ≥ 2, and is birational to a P4-bundle over Gr(2, U0) = P2, hence has
dimension 6 and codimension 6. Finally, the third degeneracy locus D3(ξ) is the
single point x0, hence has codimension 12, and for k ≥ 4 we have Dk(ξ) = ∅. �
Remark 5.10. It is straightforward to check that the fiber of the morphism σ in
Proposition 5.9 over a point [U ]∈Gr(3,7) is the projective space P((V/(U+U0))

∨)
of dimension dim(U0 ∩ U).

5.3. The induced transformation of threefolds

Now let X be a prime Fano threefold of genus 12 with a k-point x0. By Proposi-
tion 5.5 the threefold X is isomorphic to the zero locus of a global section of the
bundle (∧2U ∨)⊕3 on X. Let B ⊂ ∧2V ∨ be the three-dimensional space of sections
of ∧2U ∨ defining X ; then

X = X ∩ P
(
Ker

(
∧3V −−→ B∨ ⊗ V

))
. (5.3.1)

Furthermore, the tangent space to X at x0 is defined by the following exact se-
quence

0 −−→ Tx0(X) −−→ Hom(U0, V
+) −−→ B∨ ⊗ ∧2U∨

0 −−→ 0,

where Hom(U0, V
+) = Tx0(Gr(3, V )) and the second arrow is the differential of

the section defining X . In the next lemma we think of Tx0(X) as of a subspace
in Hom(U0, V

+).
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Lemma 5.11. The subset of P(Tx0(X)) = P2 parameterizing vectors τ of rank 1 is
finite, and the subset parameterizing vectors τ of rank 2 is at most one-dimensional.

Proof. First, assume rank(τ) = 1. If

V2 := Ker(τ) ⊂ U0 and V4 = U0 ⊕ Im(τ) ⊂ U0 ⊕ V + = V

then τ is tangent to the line �(V2, V4) ⊂ Gr(3, V ) = X. It follows from (5.3.1)
that �(V2, V4) ⊂ X. Furthermore, τ is determined by V2 and V4, hence by the line
�(V2, V4). By [KPS18, Lemma 2.1.8(ii)] the scheme F1(X,x0) is finite, hence the
subset of P(Tx0(X)) parameterizing such τ is finite.

Now assume rank(τ) = 2. Set V1 := Ker(τ) ⊂ U0. Then τ is tangent to the
intersection of X with the sub-Grassmannian

Gr(2, V/V1) ⊂ Gr(3, V ).

Let W ⊂ V be the orthogonal of V1 with respect to all 2-forms in B; then

X ∩Gr(2, V/V1) ⊂ Gr(2,W/V1),

and, moreover, X ∩Gr(2, V/V1) is a linear section of Gr(2,W/V1) of codimension
at most 3.

Clearly, dim(W ) ≥ 4. Moreover, if dim(W ) = 4 then Im(τ) ⊂ W/U0, hence
rank(τ) = 1, so we are in the previous case.

If dim(W ) = 5 then Gr(2,W/V1) = Gr(2, 4), hence its linear section of codi-
mension at most 3 is either a conic, or a plane, or a quadric of dimension ≥ 2. But
X contains neither planes nor quadric surfaces, hence X ∩Gr(2,W/V1) is a conic,
and τ is tangent to it. By [IP99, Lemma 4.2.6] the number of conics on X passing
through x0 is finite; each conic smooth at x0 has a unique tangent vector, while
conics singular at x0 have a one-dimensional set of tangent vectors in P(Tx0(X)).

Finally, if dim(W ) = 6 then

dim(Gr(2,W/V1)) = 6 and deg(Gr(2,W/V1)) = 5.

Clearly, its linear section of codimension at most 3 cannot be contained in X .
Similarly, dim(W ) cannot be equal to 7. This contradiction completes the proof.

�

Consider the preimage of X under the morphism σ from Proposition 5.9.

Lemma 5.12. The preimage σ−1(X) is a Cohen–Macaulay threefold with irreducible
components

σ−1(X) = X̃0 ∪
( ⋃

[L]∈F1(X,x0)

X̃L

)
∪ BlZ(X) ⊂ X × P3,

where

• the component X̃0 is generically reduced and (X̃0)red = {x0} × P3;

• (X̃L)red = L× P2 ⊂ X × P3;
• BlZ(X) is the blowup of X along Z = Z ∩X.
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In particular, the component X̃0 has degree 1 over the second factor of X×P3 and
the components X̃L do not dominate the second factor of X × P3.

Proof. In Proposition 5.9 we showed that BlZ(X) ⊂ X × P((V +)∨) = X × P3 is
the zero locus of the rank-3 vector bundle U ∨ � O(H+). Therefore

σ−1(X) ⊂ X × P((V +)∨) = X × P3

is the zero locus of a section of the restriction of that bundle. In particular, ev-
ery component of σ−1(X) has dimension at least 3. To classify the components
we consider the stratification of X by its intersections with the degeneracy loci
Dk(ξ) ⊂ X of the morphism (5.2.1) and use Remark 5.10 describing the fibers of
the projection σ−1(X) → X .

First, X ∩D3(ξ) = X ∩ {x0} = {x0}, and σ−1(x0) ∼= P3. This provides the

component X̃0; its scheme structure may be complicated, but we will show later
that it is generically reduced.

Next, assume [U ] ∈ X∩(D2(ξ)\D3(ξ)), i.e., dim(U∩U0) = 2. Set V2 := U∩U0.
Note that the locus of all U ⊂ V containing V2 is the space P(V/V2) ∼= P4 ⊂ X.
Since X is a linear section of X by (5.3.1), the intersection P(V/V2) ∩ X is a
linear subspace in X containing the points x0 and [U ], hence containing the line
joining them. Since X contains no planes, it follows that P(V/V2)∩X = L, where
[L] ∈ F1(X,x0). By Remark 5.10 the map σ−1(L \ {x0}) → L \ {x0} is a P2-

fibration, hence dim(σ−1(L \ {x0})) = 3. This provides the component X̃L. More
precisely, if L = �(V2, V4) for some V2 ⊂ V4 ⊂ V , dimVi = i, then

(X̃L)red = P(V4/V2)× P(V ⊥
4 ) ∼= L× P2.

In particular, the image of X̃L in P3 is a plane.
Next, assume [U ] ∈ X ∩ (D1(ξ)\D2(ξ)), i.e., dim(U ∩U0) = 1. As before, set

V1 := U ∩ U0 and let W ⊂ V be the orthogonal of V1 with respect to all 2-forms
in B. Then [U ] ∈ X ∩Gr(2,W/V1) and as in the proof of Lemma 5.11 we conclude
that X ∩ Gr(2,W/V1) is a conic or a line containing x0. The case of lines was
discussed above, so it remains to recall from [IP99, Lemma 4.2.6] that the number
of conics on X through x0 is finite, and for a conic C ⊂ X the general fiber of σ
over C is one-dimensional by Remark 5.10. Thus,

dim(σ−1(C) \ (X̃0 ∪ (∪X̃L))) ≤ 2

hence conics do not contribute to irreducible components of σ−1(X).
Finally, over X \D1(ξ) the morphism σ is an isomorphism, hence the strict

transform ofX , i.e., the blowup ofX along Z = Z∩X , is the last three-dimensional
component of σ−1(X).

As we just showed, σ−1(X) has no components of dimension greater than 3,
hence it is a Cohen–Macaulay threefold.

It remains to check that X̃0 is generically reduced. For this we consider the
intersection of σ−1(X) with the product of the infinitesimal neighborhood of x0

in X and P3. This scheme can be written inside the infinitesimal neighborhood of
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{0} ×Gr(3, V +) in Tx0(X)×Gr(3, V +) as the following subvariety (as before we
think of Tx0(X) as of a subspace in Hom(U0, V

+))

{(τ, U+) ∈ Tx0(X)×Gr(3, V +) | Im(τ) ⊂ U+}.
We need to check that its projection to Gr(3, V +) is an isomorphism over an open
subset. So, it is enough to check that the scheme

{(τ, U+) ∈ P(Tx0(X))×Gr(3, V +) | Im(τ) ⊂ U+}
is at most two-dimensional. For this we consider the projection to P(Tx0(X)) and
describe its fibers.

By Lemma 5.11 the locus of vectors τ ∈ P(Tx0(X)) of rank 1 is finite, and
the fibers over such vectors are two-dimensional. Similarly, the locus of vectors
τ ∈ P(Tx0(X)) of rank 2 is at most one-dimensional, and the fibers over such
vectors are one-dimensional. Finally, the locus of vectors τ ∈ P(Tx0(X)) of rank 3
is two-dimensional and the fibers over such vectors are zero-dimensional. This
finishes the proof. �

Now we can finally prove the theorem.

Proof of Theorem 5.1. The component BlZ(X) ⊂ σ−1(X) is birational to X by
definition, so it is enough to check that the morphism σ+ : BlZ(X) → P3 is bira-
tional.

First, note that every fiber of σ+ : σ−1(X) → P3 is the zero locus of a section
ofU ∨ onX . Therefore, the general fiber is finite, since otherwise dim(σ−1(X)) > 3
which contradicts Lemma 5.12. On the other hand, if the zero locus of a section of
U ∨ is finite, its length is equal to c3(U ∨) = 2, hence the general fiber of σ−1(X)
is a scheme of length 2. Therefore, the morphism σ+ : σ−1(X) → P3 is generically

finite of degree 2. Furthermore, by Lemma 5.12 the component X̃0 has degree 1
and the components X̃L have degree 0 over P3. This means that the remaining
component BlZ(X) has degree 1, hence the map σ+ : BlZ(X) → P3 is birational.

�

Appendix: Application to cylinders

Recall that a variety X is cylindrical if there is an open subset in X isomorphic
to U × A1. Similarly, for any r ≥ 1 we say that X is r-cylindrical if there is an
open subset in X isomorphic to U × Ar. The existence of cylinders on projective
varieties is an interesting question related to the study of automorphism groups
of affine cones [KPZ13].

By [PZ18] every Mukai fourfold of genus g = 10 over k̄ is 4-cylindrical.
Moreover, there are families of cylindrical Mukai fourfolds of genus g ∈ {7, 8, 9},
see [PZ16, PZ17]. Here we prove the following result.

Proposition A.1. Let k be an arbitrary field of characteristic zero. Let X be a Mukai
variety of genus g ∈ {7, 8, 9, 10} and dimension n ≥ 5. If X(k) �= ∅ then X is
(n− 4)-cylindrical.
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Proof. First, let g ∈ {7, 8, 10}. It follows from the proof of Theorem 3.1 that

X \ pL (L (X,x0)) = X̃+ \ PX+(E0).

Let U := X+\D(ξ0) ⊂ X+ be the open subset where the morphism ξ0 (see (3.1.6))
is surjective, so that Ker(ξ|U ) and Ker(ξ0|U ) are vector bundles of ranks n − 3
and n− 4, respectively. Then

σ−1
+ (U) \ PX+(E0)

is isomorphic to the total space of the vector bundle Ker(ξ0|U ). Restricting to
a smaller open subset U ′ ⊂ U over which this bundle is trivial, we obtain an
(n− 4)-cylinder in X̃+ \ PX+(E0), hence in X .

Now let g = 9. If n = 6, the proof of Theorem 4.4 (see Lemma 4.5) shows
that X = LGr(3, 6) contains A6 as a Zariski open subset, hence X is 6-cylindrical
in this case.

Let n = 5, so that X is a hyperplane section of LGr(3, 6). Consider the
birational transformation of Theorem 4.9. Let X+ ⊂ P6 be the corresponding
quadric and let E+ ⊂ X+ be the strict transform of the exceptional divisor E.
Then X+ \ E+ is isomorphic to an open subset of X , so it is enough to find a
cylinder in X+\E+. But E+ is a hyperplane section of the quadric X+ containing
a smooth k-rational point; projecting from such a point one can easily find the
required cylinder. �
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